In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was ...In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.展开更多
High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline pro...High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline projects. China' s initiatives to construct long-distance natural gas pipelines has brought in new opportunities for the development of X80 line pipes. Baosteel has designed the optimum chemical composition of X80 with high niobium and low molybdenum content. In addition, a welding experimental platform and a finite element model (FEM) have supported the development of X80 UOE pipes in an efficient and economical way. The application and recent development of X80 UOE pipes were introduced in this paper. To comply with the requirements of the Second West-East Gas Pipeline Project (2^nd WEPP ), X80 pipeline steel with low carbon bainite microstructure was developed by utilizing the optimized composition and TMCP process. The matching welding material, welding procedure and UOE forming processes for 1 219mm outside diameter X80 UOE pipes were also developed. More than 340 000 t of X80 UOE pipes were produced and applied in the 2^nd WEPP. Furthermore, to meet the prospective demand for long-distance gas pipelines with an annual transportation capacity of over 40 billion m3 ,larger size X80 UOE pipes with 1 422 mm OD × 30. 8 mm WT were trial produced recently. DWTT performance, the main technical challenge for heavier wall pipes, was improved by using optimized microstructural design. The newly developed X80 pipes can be potentially used for larger transportation capacity pipelines in China.展开更多
Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by ...Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by three-dimensional elastodynamic theory and those in the pile are simulated by Rayleigh-Love rod theory. The vertical and radial displacements of the outer and inner soil are obtained by utilizing Laplace transform technique and differentiation on the governing equations of soils. Then, based on the continuous conditions between the pile and soils, the displacements of the pile are derived. The frequency domain velocity admittance and time domain velocity response of the pile top are also presented. The solution is compared to a classical rod model solution to verify the validity. The influences of the radii and Poisson ratio of pile on the transverse inertia effect of pile are analyzed. The parametric study shows that Poisson ratio and outer radius of pile have significant influence on the transverse inertia effect of large diameter pipe piles, while the inner radius has little effect.展开更多
This paper introduced the research and development of large-diameter SSAW pipes applied to West-East Pipeline project as well as domestic acicular ferrite pipeline steel of X70 grade. Its microstructure analysis was p...This paper introduced the research and development of large-diameter SSAW pipes applied to West-East Pipeline project as well as domestic acicular ferrite pipeline steel of X70 grade. Its microstructure analysis was performed in comparison with the pipeline steel of a foreign steel plant (SPC). This paper introduced the research of welding procedures prior to SSAW pipe making and some new procedures and technologies used for West-East Pipeline Project, and appraised the practical level of Large-diameter SSAW pipe applied to the West-East Pipeline Project.展开更多
With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and f...With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.展开更多
针对在越江海高水压水下超大直径盾构隧道联络通道施工过程中缺乏足够的工程技术标准和案例经验、设计与施工面临众多挑战问题,以广州海珠湾超大直径盾构隧道区间的6条联络通道工程为例,对工程地质补勘资料及现场施工情况进行分析,揭示...针对在越江海高水压水下超大直径盾构隧道联络通道施工过程中缺乏足够的工程技术标准和案例经验、设计与施工面临众多挑战问题,以广州海珠湾超大直径盾构隧道区间的6条联络通道工程为例,对工程地质补勘资料及现场施工情况进行分析,揭示原矿山法设计施工方案存在的不足,并基于此提出“矿山法结合地层冻结加固方案”和“机械顶管法施工方案”2种优化方案;随后在安全性、经济性、施工工期等方面对不同工法进行综合优选分析,同时引入碳排放指标进行绿色低碳评估。研究结果表明:1)机械顶管法在安全性和施工效率上优于其他方案,能够显著缩短施工周期;2)相比矿山法结合地层冻结加固方案,机械顶管法方案碳排放量减少了2 747.51 t CO_(2e)。展开更多
基金Projects(50905144,51275415)supported by the National Natural Science Foundation of ChinaProject supported by the Program for New Century Excellent Talents in University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China("111"Project)
文摘In order to develop the warming bending technology of the large diameter thin-walled(LDTW) commercial pure titanium alloy CP-Ti tubes, the warm bending mechanism of the extrados and intrados of LDTW CP-Ti tubes was researched. By EBSD analysis and Vickers hardness test, the changes of microstructure and strength of the tubes at different bending temperatures of 293, 423 and 573 K, were analyzed. The results show: 1) The extrados of the bent tube deforms mainly by slip, along with few twinning, and the preferred orientation is similar to that of the initial tube; the intrados of the bent tube experiences compression deformation mainly by {1 012} tensile twinning, and the twinning makes the preferred orientation of wall materials change sharply. 2) The Vickers hardness values of both the extrados and intrados of the samples after bending increase greatly; the Vickers hardness values of the intrados are much higher than those of the extrados, and Vickers hardness values of the RD-TD planes are always higher than those of the RD-LD planes, which are related to the different deformation mechanisms.
文摘High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline projects. China' s initiatives to construct long-distance natural gas pipelines has brought in new opportunities for the development of X80 line pipes. Baosteel has designed the optimum chemical composition of X80 with high niobium and low molybdenum content. In addition, a welding experimental platform and a finite element model (FEM) have supported the development of X80 UOE pipes in an efficient and economical way. The application and recent development of X80 UOE pipes were introduced in this paper. To comply with the requirements of the Second West-East Gas Pipeline Project (2^nd WEPP ), X80 pipeline steel with low carbon bainite microstructure was developed by utilizing the optimized composition and TMCP process. The matching welding material, welding procedure and UOE forming processes for 1 219mm outside diameter X80 UOE pipes were also developed. More than 340 000 t of X80 UOE pipes were produced and applied in the 2^nd WEPP. Furthermore, to meet the prospective demand for long-distance gas pipelines with an annual transportation capacity of over 40 billion m3 ,larger size X80 UOE pipes with 1 422 mm OD × 30. 8 mm WT were trial produced recently. DWTT performance, the main technical challenge for heavier wall pipes, was improved by using optimized microstructural design. The newly developed X80 pipes can be potentially used for larger transportation capacity pipelines in China.
基金Project(U1134207)jointly supported by the National Natural Science Foundation and High Speed Railway Key Program of ChinaProject(NCET-12-0843)supported by the Program for New Century Excellent Talents in University of China+1 种基金Projects(51378177,51420105013)supported by the National Natural Science Foundation of ChinaProjects(2015B05014,2014B02814)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by three-dimensional elastodynamic theory and those in the pile are simulated by Rayleigh-Love rod theory. The vertical and radial displacements of the outer and inner soil are obtained by utilizing Laplace transform technique and differentiation on the governing equations of soils. Then, based on the continuous conditions between the pile and soils, the displacements of the pile are derived. The frequency domain velocity admittance and time domain velocity response of the pile top are also presented. The solution is compared to a classical rod model solution to verify the validity. The influences of the radii and Poisson ratio of pile on the transverse inertia effect of pile are analyzed. The parametric study shows that Poisson ratio and outer radius of pile have significant influence on the transverse inertia effect of large diameter pipe piles, while the inner radius has little effect.
文摘This paper introduced the research and development of large-diameter SSAW pipes applied to West-East Pipeline project as well as domestic acicular ferrite pipeline steel of X70 grade. Its microstructure analysis was performed in comparison with the pipeline steel of a foreign steel plant (SPC). This paper introduced the research of welding procedures prior to SSAW pipe making and some new procedures and technologies used for West-East Pipeline Project, and appraised the practical level of Large-diameter SSAW pipe applied to the West-East Pipeline Project.
基金supported by the National Natural Science Foundation of China (Grant Nos. 59975076, 50175092, 50905144)the National Science Found of China for Distinguished Young Scholars (Grant No. 50225518)
文摘With increasing diameters of aluminum alloy thin-walled tubes (AATTs), the tube forming limits, i.e. the minimum bending factors, and their predictions under multi-index constraints including wrinkling, thinning and flattening have been being a key problem to be urgently solved for improving tube forming potential in numerical control (NC) bending processes of AATTs with large diameters. Thus in this paper, a search algorithm of the forming limits is put forward based on a 3D elastic-plastic finite element (FE) model and a wrinkling energy prediction model for the bending processes under axial compression loading (ACL) or not. This algorithm enables to be considered the effects of process parameter combinations including die, friction parameters on the multi-indices. Based on this algorithm, the forming limits of the different size tubes are obtained, and the roles of the process parameter combinations in enabling the limit bending processes are also revealed. The followings are found: the first, within the appropriate ranges of friction and clearances between the different dies and the tubes enabling the bending processes with smaller bending factors, the ACL enables the tube limit bending processes after a decrease of the mandrel ball thickness and diameters; then, without considering the effects of the tube geometry sizes on the tube constitutive equations, the forming limits will be decided by the limit thinning values for the tubes with diameters smaller than 80 mm, while the wrinkling for the tubes with diameters no less than 80 mm. The forming limits obtained from this algorithm are smaller than the analytical results, and reduced by 57.39%; the last, the roles of the process parameter combinations in enabling the limit bending processes are verified by experimental results.
文摘针对在越江海高水压水下超大直径盾构隧道联络通道施工过程中缺乏足够的工程技术标准和案例经验、设计与施工面临众多挑战问题,以广州海珠湾超大直径盾构隧道区间的6条联络通道工程为例,对工程地质补勘资料及现场施工情况进行分析,揭示原矿山法设计施工方案存在的不足,并基于此提出“矿山法结合地层冻结加固方案”和“机械顶管法施工方案”2种优化方案;随后在安全性、经济性、施工工期等方面对不同工法进行综合优选分析,同时引入碳排放指标进行绿色低碳评估。研究结果表明:1)机械顶管法在安全性和施工效率上优于其他方案,能够显著缩短施工周期;2)相比矿山法结合地层冻结加固方案,机械顶管法方案碳排放量减少了2 747.51 t CO_(2e)。