The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and w...The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis.展开更多
In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it...In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.展开更多
Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of h...Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of high-resolution observations.This study describes a large eddy simulation(LES)dataset for four shallow convection cases that differ primarily in inversion strength,which can be used as a surrogate for real data.To reduce the uncertainty in LES modeling,three different large eddy models were used,including SAM(System for Atmospheric Modeling),WRF(Weather Research and Forecasting model),and UCLA-LES.Results show that the different models generally exhibit similar behavior for each shallow convection case,despite some differences in the details of the convective structure.In addition to grid-averaged fields,conditionally sampled variables,such as in-cloud moisture and vertical velocity,are also provided,which are indispensable for calculation of the entrainment/detrainment rate.Considering the essentiality of the entraining/detraining process in the parameterization of cumulus convection,the dataset presented in this study is potentially useful for validation and improvement of the parameterization of shallow convection.展开更多
This paper conducts a Large Eddy Simulation (LES) of Rayleigh Bénard convection in a cubic cavity based on the WMLES S-Omega subgrid-scale model. For a cubic cavity with a vertical temperature difference of 6.7...This paper conducts a Large Eddy Simulation (LES) of Rayleigh Bénard convection in a cubic cavity based on the WMLES S-Omega subgrid-scale model. For a cubic cavity with a vertical temperature difference of 6.7°C and 20°C, the velocity pulsation profiles and the mean velocity profiles of the vertical section in the middle of the cubic cavity were simulated, respectively. And they are consistent with the experiment results. Furthermore, the mean velocity field of the vertical cross-section in the middle of the cavity was calculated. Structures of the mean velocity field in the two cases are similar. A counterclockwise large vortex is found to occupy the cavity, and there are two small clockwise vortices in the lower left and upper right corners, and the mean velocity fields at two different temperature differences are consistent with the experimental results. The two-dimensional instantaneous temperature field and mean temperature field with different cross-sections in the z-direction, as well as the three-dimensional instantaneous isothermal surface structure, indicate that the large-scale circulation motion within the cubic cavity is moving diagonally. In addition, the structure of the mean streamline also illustrates this viewpoint. For the reverse vortex formed at two corners in the mean streamline structure, we used the Q criterion to identify and obtain two vortex structures similar to boomerangs. The basic turbulent structure in RB thermal convection includes the rising and falling plumes generated by buoyancy effects.展开更多
Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate...Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.展开更多
Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The...Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.展开更多
A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerica...A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V^iis/il^i (BV) frequencies are com- puted with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, sec-ondary structures such as baroclinic vorticity and helical structures are also simulated. Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex.展开更多
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c...An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.展开更多
Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with S...Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.展开更多
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the ...A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.展开更多
The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field ...The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.展开更多
In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was ac...In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was accounted for by means of the improved inner-outer iterative algorithm. The sub-grid scale model was a conventional Smagorinsky model. The numerical solution of the governing equations was conducted in a cylindrical staggered grid. The momentum and the continuity equations were discretized using the finite difference method, with a third-order QUICK scheme used for convective terms. The phase-resolved predictions were compared with the experimental data of Wu and Patterson and good agreement was observed for both the mean and the turbulence quantities. They were much better than the Reynolds-averaged Navier-Stokes model including the Reynolds Stress Model for simulating the turbulence. The study also suggests the feasibility of LES in combination with the improved inner-outer iterative algorithm for the simulation of turbulent flow in stirred tanks.展开更多
A three dimensional numerical model in the σ coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgrid scale (SGS) model with the concept of large eddy simulatio...A three dimensional numerical model in the σ coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgrid scale (SGS) model with the concept of large eddy simulation (LES). The σ coordinate transformation is introduced to map the irregular physical domain of the wavy free surface and uneven bottom onto the regular computational domain of the shape of rectangular prism. The operator splitting method, which splits the solution procedure into the advection, diffusion, and propagation steps, is used to solve the modified Navier Stokes Equation. The model is used to simulate the propagation of solitary wave and wave passing over a submerged breakwater. Numerical results are compared with available analytical solutions and experimental data in terms of velocity profiles, free surface displacement, and energy conservation. Good agreement is obtained. The method is proved to be of high accuracy and efficiency in simulating surface wave propagation and wave structure interaction. It is suitable for the large and irregular physical domain, and requiring the non uniform grid system. The present work provides a foundation for further studies of random waves, wave structure interaction, wave discharge interaction, etc.展开更多
Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a seco...Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors.展开更多
Slope variation will significantly affect the characteristics of the wind field around a hill.This paper conducts a large-eddy simulation(LES)on an ideal 3D hill to study the impact of slope on wind field properties.E...Slope variation will significantly affect the characteristics of the wind field around a hill.This paper conducts a large-eddy simulation(LES)on an ideal 3D hill to study the impact of slope on wind field properties.Eight slopes ranging from 10°to 45°at 5°intervals are considered,which covers most conventional hill slopes.The inflow turbulence for the LES is generated by adopting a modified generation method that combines the equilibrium boundary conditions with the Fluent inherent vortex method to improve the simulation accuracy.The time-averaged flow field and the instantaneous vortex structure under the eight slopes are comparatively analyzed.The accuracy of the present method is verified by comparison with experimental data.The slope can affect both the mean and fluctuating wind flow fields around the 3D hill,especially on the hilltop and the leeward side,where a critical slope of 25°can be observed.The fluctuating wind speeds at the tops of steep hills(with slope angles beyond 25°)decrease with increasing slope,while the opposite phenomenon occurs on gentle hills.With increasing slope,the energy of the high-speed descending airflow is enhanced and pushes the separated flow closer to the hill surface,resulting in increased wind speed near the wall boundary on the leeward side and inhibiting the development of turbulence.The vortex shedding trajectory in the wake region becomes wider and longer,suppressing the growth of the mean wind near the wall boundary and enhancing the turbulence intensity.展开更多
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large edd...A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.展开更多
A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structu...A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations(LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3.More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 92158204, 41506001 and 42076019)a Project supported by the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. 311021005)。
文摘The variations of the frontogenetic trend of a cold filament induced by the cross-filament wind and wave fields are studied by a non-hydrostatic large eddy simulation. Five cases with different strengths of wind and wave fields are studied.The results show that the intense wind and wave fields further break the symmetries of submesoscale flow fields and suppress the levels of filament frontogenesis. The changes of secondary circulation directions—that is, the conversion between the convergence and divergence of the surface cross-filament currents with the downwelling and upwelling jets in the filament center—are associated with the inertial oscillation. The filament frontogenesis and frontolysis caused by the changes of secondary circulation directions may periodically sharpen and smooth the gradient of submesoscale flow fields.The lifecycle of the cold filament may include multiple stages of filament frontogenesis and frontolysis.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No.2019QZKK010203)the National Natural Science Foundation of China (Grant No.42175174 and 41975130)+1 种基金the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1092)the Sichuan Provincial Innovation Training Program for College Students (Grant No.S202210621009)。
文摘In a convective scheme featuring a discretized cloud size density, the assumed lateral mixing rate is inversely proportional to the exponential coefficient of plume size. This follows a typical assumption of-1, but it has unveiled inherent uncertainties, especially for deep layer clouds. Addressing this knowledge gap, we conducted comprehensive large eddy simulations and comparative analyses focused on terrestrial regions. Our investigation revealed that cloud formation adheres to the tenets of Bernoulli trials, illustrating power-law scaling that remains consistent regardless of the inherent deep layer cloud attributes existing between cloud size and the number of clouds. This scaling paradigm encompasses liquid, ice, and mixed phases in deep layer clouds. The exponent characterizing the interplay between cloud scale and number in the deep layer cloud, specifically for liquid, ice, or mixed-phase clouds, resembles that of shallow convection,but converges closely to zero. This convergence signifies a propensity for diminished cloud numbers and sizes within deep layer clouds. Notably, the infusion of abundant moisture and the release of latent heat by condensation within the lower atmospheric strata make substantial contributions. However, this role in ice phase formation is limited. The emergence of liquid and ice phases in deep layer clouds is facilitated by the latent heat and influenced by the wind shear inherent in the middle levels. These interrelationships hold potential applications in formulating parameterizations and post-processing model outcomes.
基金the National Key R&D Program of China(Grant No.2021YFC3000802)the National Natural Science Foundation of China(Grant No.42175165)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
文摘Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of high-resolution observations.This study describes a large eddy simulation(LES)dataset for four shallow convection cases that differ primarily in inversion strength,which can be used as a surrogate for real data.To reduce the uncertainty in LES modeling,three different large eddy models were used,including SAM(System for Atmospheric Modeling),WRF(Weather Research and Forecasting model),and UCLA-LES.Results show that the different models generally exhibit similar behavior for each shallow convection case,despite some differences in the details of the convective structure.In addition to grid-averaged fields,conditionally sampled variables,such as in-cloud moisture and vertical velocity,are also provided,which are indispensable for calculation of the entrainment/detrainment rate.Considering the essentiality of the entraining/detraining process in the parameterization of cumulus convection,the dataset presented in this study is potentially useful for validation and improvement of the parameterization of shallow convection.
文摘This paper conducts a Large Eddy Simulation (LES) of Rayleigh Bénard convection in a cubic cavity based on the WMLES S-Omega subgrid-scale model. For a cubic cavity with a vertical temperature difference of 6.7°C and 20°C, the velocity pulsation profiles and the mean velocity profiles of the vertical section in the middle of the cubic cavity were simulated, respectively. And they are consistent with the experiment results. Furthermore, the mean velocity field of the vertical cross-section in the middle of the cavity was calculated. Structures of the mean velocity field in the two cases are similar. A counterclockwise large vortex is found to occupy the cavity, and there are two small clockwise vortices in the lower left and upper right corners, and the mean velocity fields at two different temperature differences are consistent with the experimental results. The two-dimensional instantaneous temperature field and mean temperature field with different cross-sections in the z-direction, as well as the three-dimensional instantaneous isothermal surface structure, indicate that the large-scale circulation motion within the cubic cavity is moving diagonally. In addition, the structure of the mean streamline also illustrates this viewpoint. For the reverse vortex formed at two corners in the mean streamline structure, we used the Q criterion to identify and obtain two vortex structures similar to boomerangs. The basic turbulent structure in RB thermal convection includes the rising and falling plumes generated by buoyancy effects.
基金The project was supported by the National Natural Science Foundation of China (10372090)the Doctoral Program of Higher Education of China (20030335001)
文摘Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equa- tion. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity, diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time- averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.
基金The research was supported by the National Natural Science Foundation of China under Grant Nos.40333027 and 40075004.
文摘Based on a pseudo-spectral large eddy simulation (LES) model, an LES model with an anisotropy turbulent kinetic energy (TKE) closure model and an explicit multi-stage third-order Runge-Kutta scheme is established. The modeling and analysis show that the LES model can simulate the planetary boundary layer (PBL) with a uniform underlying surface under various stratifications very well. Then, similar to the description of a forest canopy, the drag term on momentum and the production term of TKE by subgrid city buildings are introduced into the LES equations to account for the area-averaged effect of the subgrid urban canopy elements and to simulate the meteorological fields of the urban boundary layer (UBL). Numerical experiments and comparison analysis show that: (1) the result from the LES of the UBL with a proposed formula for the drag coefficient is consistent and comparable with that from wind tunnel experiments and an urban subdomain scale model; (2) due to the effect of urban buildings, the wind velocity near the canopy is decreased, turbulence is intensified, TKE, variance, and momentum flux are increased, the momentum and heat flux at the top of the PBL are increased, and the development of the PBL is quickened; (3) the height of the roughness sublayer (RS) of the actual city buildings is the maximum building height (1.5-3 times the mean building height), and a constant flux layer (CFL) exists in the lower part of the UBL.
基金Project supported by the Boeing-COMAC Aviation Energy Conservation and Emissions Reduction Technology Center(AECER)
文摘A self-adaptive-grid method is applied to numerical simulation of the evolu- tion of aircraft wake vortex with the large eddy simulation (LES). The Idaho Falls (IDF) measurement of run 9 case is simulated numerically and compared with that of the field experimental data. The comparison shows that the method is reliable in the complex atmospheric environment with crosswind and ground effect. In addition, six cases with different ambient atmospheric turbulences and Brunt V^iis/il^i (BV) frequencies are com- puted with the LES. The main characteristics of vortex are appropriately simulated by the current method. The onset time of rapid decay and the descending of vortices are in agreement with the previous measurements and the numerical prediction. Also, sec-ondary structures such as baroclinic vorticity and helical structures are also simulated. Only approximately 6 million grid points are needed in computation with the present method, while the number can be as large as 34 million when using a uniform mesh with the same core resolution. The self-adaptive-grid method is proved to be practical in the numerical research of aircraft wake vortex.
基金the National Natural Science Foundation of China(50779069 and 90510007)the Start-up Scientific Research Foundation of China Agricultural University(2006021)the Beijing Natural Science Foundation(3071002).
文摘An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
文摘Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.
基金supported by the National Natural Science Foundation of China (11302238, 11232011. and 11572331)support from the Strategic Priority Research Program (XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100: Nonlinear science)
文摘A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles.
文摘The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.
基金Supported by the National Natural Science Foundation of China (No.20236050) and the State Key Development Program for Basic Research of China (No.2004CB217604).
文摘In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was accounted for by means of the improved inner-outer iterative algorithm. The sub-grid scale model was a conventional Smagorinsky model. The numerical solution of the governing equations was conducted in a cylindrical staggered grid. The momentum and the continuity equations were discretized using the finite difference method, with a third-order QUICK scheme used for convective terms. The phase-resolved predictions were compared with the experimental data of Wu and Patterson and good agreement was observed for both the mean and the turbulence quantities. They were much better than the Reynolds-averaged Navier-Stokes model including the Reynolds Stress Model for simulating the turbulence. The study also suggests the feasibility of LES in combination with the improved inner-outer iterative algorithm for the simulation of turbulent flow in stirred tanks.
文摘A three dimensional numerical model in the σ coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgrid scale (SGS) model with the concept of large eddy simulation (LES). The σ coordinate transformation is introduced to map the irregular physical domain of the wavy free surface and uneven bottom onto the regular computational domain of the shape of rectangular prism. The operator splitting method, which splits the solution procedure into the advection, diffusion, and propagation steps, is used to solve the modified Navier Stokes Equation. The model is used to simulate the propagation of solitary wave and wave passing over a submerged breakwater. Numerical results are compared with available analytical solutions and experimental data in terms of velocity profiles, free surface displacement, and energy conservation. Good agreement is obtained. The method is proved to be of high accuracy and efficiency in simulating surface wave propagation and wave structure interaction. It is suitable for the large and irregular physical domain, and requiring the non uniform grid system. The present work provides a foundation for further studies of random waves, wave structure interaction, wave discharge interaction, etc.
基金The project supported by the National Science Fund for Distinguished Scholars (10125210)the Special Funds for Major State Basic Research Project (G1999032801)the National Natural Science Foundation of China (19772062)
文摘Viscous flow around a circular cylinder at a subcritical Reynolds number is investigated using a large eddy simulation (LES) coupled with the Smagorinsky subgrid-scale (SGS) model. A fractional-step method with a second-order in time and a combined finite-difference/spectral approximations are used to solve the filtered three-dimensional incompressible Navier-Stokes equations. Calculations have been performed with and without the SGS model. Turbulence statistical behaviors and flow structures in the near wake of the cylinder are studied. Some calculated results, including the lift and drag coefficients, shedding frequency, peak Reynolds stresses, and time-average velocity profile, are in good agreement with the experimental and computational data, which shows that the Smagorinsky model can reasonably predict the global features of the flow and some turbulent statistical behaviors.
基金supported by the National Key R&D Plan of China(No.2018YFB1501104)the National Natural Science Foundation of China(Grant No.52278511)+1 种基金the Natural Science Foundation of Hebei Province(No.E2021210053)the Young Backbone Teacher Cultivation Program of Henan University of Technology.
文摘Slope variation will significantly affect the characteristics of the wind field around a hill.This paper conducts a large-eddy simulation(LES)on an ideal 3D hill to study the impact of slope on wind field properties.Eight slopes ranging from 10°to 45°at 5°intervals are considered,which covers most conventional hill slopes.The inflow turbulence for the LES is generated by adopting a modified generation method that combines the equilibrium boundary conditions with the Fluent inherent vortex method to improve the simulation accuracy.The time-averaged flow field and the instantaneous vortex structure under the eight slopes are comparatively analyzed.The accuracy of the present method is verified by comparison with experimental data.The slope can affect both the mean and fluctuating wind flow fields around the 3D hill,especially on the hilltop and the leeward side,where a critical slope of 25°can be observed.The fluctuating wind speeds at the tops of steep hills(with slope angles beyond 25°)decrease with increasing slope,while the opposite phenomenon occurs on gentle hills.With increasing slope,the energy of the high-speed descending airflow is enhanced and pushes the separated flow closer to the hill surface,resulting in increased wind speed near the wall boundary on the leeward side and inhibiting the development of turbulence.The vortex shedding trajectory in the wake region becomes wider and longer,suppressing the growth of the mean wind near the wall boundary and enhancing the turbulence intensity.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51479116 and 11272213)
文摘A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.
基金Project supported by the National Natural Science Foundation of China(Nos.91441117 and 51576182)
文摘A sub-grid scale(SGS) combustion model, which combines the artificial thickened flame(ATF) model with the flamelet generated manifold(FGM) tabulation method, is proposed. Based on the analysis of laminar flame structures, two self-contained flame sensors are used to track the diffusion and reaction processes with different spatial scales in the flame front, respectively. The dynamic formulation for the proposed SGS combustion model is also performed. Large eddy simulations(LESs) of Bunsen flame F3 are used to evaluate the different SGS combustion models. The results show that the proposed SGS model has the ability in predicting the distributions of temperature and velocity reasonably, while the predictions for the distributions of some species need further improvement. The snapshots of instantaneous normalized progress variables reveal that the flame is more remarkably and severely wrinkled at the flame tip for flame F3.More satisfactory results obtained by the dynamic model indicate that it can preserve the premixed flame propagation characteristics better.