Based on the former workers' study results such as numerical simulation of fluid mechanics, seismic tomography of the whole earth and igneous rocks, the basie characteristics of mantle plumes are summarized in det...Based on the former workers' study results such as numerical simulation of fluid mechanics, seismic tomography of the whole earth and igneous rocks, the basie characteristics of mantle plumes are summarized in detail, namely the mantle plume, from the D" layer near the core-mantle boundary (CMB) of 2900 km deep, is characterized by the shape of large head and thin narrow conduit, by the physical property of high temperature and low viscosity. The LIP (large igneous province) is the best exhibition when the mantle plume ascends to the surface. According to the basie characteristics of the mantle plumes and the LIP, as well as the temporal-spatial relationships between the mantle plume and Continental breakup, the detailed research on petrology, geochemistry, temporal-spatial distribution, tectonic background of the Cenozoic-Mesozoic igneous rocks and gravity anomaly distribution in East China has been done. As a result, the Mesozoic igneous rocks in Southeast China should not be regarded as an example of typical LIP related to mantle plumes, for their related characteristics are not consistent with those of the typical LIPs related to mantle plumes. The Cenozoic igneous rocks in Northeast China have no the typical characteristics of mantle plumes and hotspots, so the Cenozoic volcanism in Northeast China might have no the direct relationships with the activity of mantle plumes.展开更多
Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137....Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.展开更多
Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture ...Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis.展开更多
The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts w...The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts were provided by geological and geochemical methods, but the geophysical investigation is very limited. In order to better understand the deep structure and features of ELIP, we have studied the crustal velocity structure using the data acquired from the Lijiang-Panzhihua-Qingzhen wide-angle seismic profile. This profile crosses the three sub-zones of the ELIP(the inner, intermediate, and outer zones), divided based on the differential erosion and uplift of the Maokou limestone. The results provided by the active source seismic experiment demonstrate:(1) The average depth of the crystalline basement along the profile is about 2 km.(2) The middle crust in the Inner Zone is characterized by high-velocity anomalies, with the average velocity of 6.2-6.6 km/s, which is about 0.1– 0.2 km/s higher than the normal one. The velocity of the lower crust in the inner zone is 6.9-7.2 km/s, higher than those observed in the intermediate and outer zones(6.7-7.0 km/s). Relatively low velocity anomalies appear in the upper, middle and lower crusts near the junction of the inner zone and intermediate zone, probably due to the effect of the Xiaojiang fault(XJF).(3) The average velocity of the crust is comparatively low on both sides of XJF, especially on the east side, and the average velocity of the consolidated continental crust is also low there. This may suggest that the XJF extends at least down to 40 km deep, even beyond through the crust.(4) The depth to the Moho discontinuity decrease gradually from 47-53 km in the inner zone, via 42-50 km in the intermediate zone to 38-42 km in the outer zone. In the inner zone, the Moho uplifts locally and the(consolidated) crust is characterized by high-velocity anomalies, which are likely related to intensive magma intrusion and underplating associated with melting of plume head. Overall the crustal velocity structure in the study area recorded the imprint left by the Permian Emeishan mantle plume.展开更多
The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone...The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion. The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing (e.g. uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived, plume-like upwelling of mantle-derived magmas. The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota durin~ the late Caoitanian.展开更多
Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth's history. Their flood basalts and associated intrusions can cause significant release of SO4 and ...Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth's history. Their flood basalts and associated intrusions can cause significant release of SO4 and CO2 and consequently, cause major environmental disruptions. Here, we reconstruct the long-term periodic pattern of LIP emplacement and its impact on ocean chemistry and biodiversity from δ34Ssulfate of the last 520 Ma under particular consideration of the preservation limits of LIP records. A combination of cross-wavelet and other time-series analysis methods has been applied to quantify a potential chain of linkage between LIP emplacement periodicity, geochemical changes and the Phanerozoic marine genera record. We suggest a mantle plume cyclicity represented by LIP volumes (V) of V= (350-770) × 103km3sin(27πt/ 170 Ma)+ (300-650)× 103 km3 sin(2πt/64.5 Ma + 2.3) for t= time in Ma. A shift from the 64.5 Ma to a weaker -28-35 Ma LIP cyclicity during the Jurassic contributes together with probably independent changes in the marine sulfur cycle to less ocean anoxia, and a general stabilization of ocean chemistry and increasing marine biodiversity throughout the last -135 Ma. The LIP cycle pattern is coherent with marine biodiversity fluctuations corresponding to a reduction of marine biodiversity of -120 genera/Ma at 600 x 103 km3 LIP eruption volume. The 62-65 Ma LIP cycle pattern as well as excursion in -34Ssulfate and marine genera reduction suggest a not-vet identified found LIP event at - 440-450 Ma.展开更多
Igneous and detrital zircons have six major U/Pb isotopic age peaks in common(2700 Ma,1875 Ma.1045 Ma,625 Ma,265 Ma and 90 Ma).For igneous rocks,each age peak is comprised of subpeaks with distinct geographic distribu...Igneous and detrital zircons have six major U/Pb isotopic age peaks in common(2700 Ma,1875 Ma.1045 Ma,625 Ma,265 Ma and 90 Ma).For igneous rocks,each age peak is comprised of subpeaks with distinct geographic distributions and a subpeak age range per age peak≤100 Myr.There are eight major LIP age peaks(found on≥10 crustal provinces)of which only four are in common to major detrital zircon age peaks(2715 Ma,1875 Ma,825 Ma,90 Ma).Of the whole-rock Re depletion ages,58%have correspo nding detrital zircon age peaks and 55%have corresponding LIP age peaks.Ten age pea ks are fou nd in common to igneous zircon,detrital zircon,LIP,and Re depletion age time series(3225 Ma,2875 Ma,2145 Ma,2085 Ma,1985 Ma,1785 Ma,1455 Ma,1175 Ma,825 Ma,and 90 Ma).and these are very robust peaks on a global scale as recorded in both crustal and mantle rocks.About 50%of the age peaks in each of these time series correspond to predicted peaks in a 94-Myr mantle cycle,including four of the ten peaks in common to all four time series(2875 Ma,1785 Ma,825 Ma and 90 Ma).Age peak widths and subpeak ranges per age peak suggest that mantle events responsible for age peaks are<100 Myr and many<50 Myr in duration.Age peak geographic distributions show three populations(≤1000 Ma,2500-1000 Ma,>2500 Ma),with the number of new provinces in which age peaks are represented decreasing with time within each population.The breaks between the populations(at 2.5 Ga and 1 Ga)fall near the onsets of two transitions in Earth history.The First Transition may represent a change from stagnant-lid tectonics into plate tectonics and the Second Transition,the onset of subduction of continental crust.The major factor controlling geographic distribution of age peaks is the changing locations of orogeny.Before^2 Ga,age subpeaks and peaks are housed in orogens within or around the edges of crustal provinces,mostly in accretionary orogens.but beginning at 1.9 Ga,collisional orogens become more important.The coincidence in duration between magmatic flare-ups in Phanerozoic arcs and duration of age subpeaks(10-30 Myr)is consiste nt with subpeaks representing periods of enhanced arcrelated magmatism.probably caused by increased subduction flux.The correlation of isotopic age peaks between time series supports a cause and effect relationship between mantle plume activity,continental magma production at convergent margins,and crustal deformation.Correlation of over half of the detrital zircon age peaks(and six of the nine major peaks)with Re depletion age peaks supports an interpretation of the zircon peaks as crustal growth rather than selective preservation peaks.展开更多
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic ro...Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma.展开更多
A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 13...A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin.展开更多
Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a rel...Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny.展开更多
The Mesoproterozoic(1.11 Ga)Umkondo large igneous province(LIP)in southern Africa and Antarctica was emplaced in<5 Myr and is dominated by low-Ti tholeiitic doleritic-gabbroic sills.It is of particular interest bec...The Mesoproterozoic(1.11 Ga)Umkondo large igneous province(LIP)in southern Africa and Antarctica was emplaced in<5 Myr and is dominated by low-Ti tholeiitic doleritic-gabbroic sills.It is of particular interest because it is the least studied LIP in southern Africa with both sublithospheric and lithospheric mantle sources proposed and it coincides with the early assembly of Rodinia,so it has importance in understanding the nature of magmatism and tectonics in and around the Kalahari craton during the Mesoproterozoic.In this study,we compiled a large database of existing(~750)and new(~100)major and trace element data for the Umkondo province,as well as 42 new Sr-Nd isotopic measurements,to provide constraints on its magma sources and geochemical evolution.Major element compositional variations in the low-Ti tholeiites are explained by low-pressure(1 kbar)three-phase fractional crystallisation(olivine,clinopyroxene and plagioclase)of a parent magma with~10 wt.%MgO in oxidising conditions(QFM+1).Inverse models show that the low-Ti tholeiitic magmas were derived as residual melts after the crystallization of 12%-33%olivine from primary komatiitic-basaltic magmas(up to~20 wt.%MgO)in equilibrium with mantle olivine(Fo90).Low Sm/Yb and TiO2/Yb-Nb/Yb indicate that the primary magmas were derived by 2%-20%shallow(40-50 km)partial melting of spinel lherzolite.High Sm/Yb is restricted to dyke swarms and may imply limited magma production from deeper(up to~70 km)garnet lherzolite-like sources.The low-Ti tholeiites of the Umkondo province are enriched in large ion lithophile elements(Rb-Sr-Cs-K)and depleted in high-field strength elements(Zr-Hf-Nb-Ta),indicating the involvement of crustal material and/or the subcontinental lithospheric mantle.This is supported by covariations in Th/Nb,Nb/Yb,Nb/La and Ce/Sm with generally negativeΔNb.Sr-Nd isotopes lend support to the notion that the Umkondo magmas were derived from depleted and/or enriched sublithospheric mantle sources and subsequently contaminated by enriched lithospheric material during emplacement(initial(at 1.11 Ga)^(87)Sr/^(86)Sr between 0.704820 and 0.737464 andεNd between-8.9 and+5.3).The Vredefort sills are significant as they display the most depleted Sr-Nd isotopic signatures(average initial ^(87)Sr/^(86)Sr of 0.705342 and averageεNd of 0.4)and are the least contaminated magma suite in the Umkondo province.Because of(i)the large volume of low-Ti magmas,(ii)evidence of a primary hot and MgO-rich(komatiitic)magma,and(iii)the short duration of magmatism,we suggest that the Umkondo province was formed by plume-induced melting of the sublithospheric mantle beneath the Kalahari craton in an extensional setting.This contrasts with previous suggestions that the heat source developed in response to the“thermal insulation”of the mantle beneath a thickened Kalahari craton in the absence of a mantle plume.There is further evidence from the elevated Zn/Fe that the sublithospheric mantle was lithologically heterogeneous and consisted of mixed peridotite and pyroxenite domains.There is a general lack of ultramafic cumulates in the low-Ti magma suite that may imply there was deeper ponding and storage of the primary magmas that fractionated large quantities of ultramafic rocks.There is also a paucity of high-Ti rocks in the Umkondo province that may reflect limited direct melting of the lithospheric mantle or that they are simply not as well-preserved in this province compared to the Karoo province.The similar trace element and Sr-Nd isotopic compositions of the Umkondo sills in southern Africa with the Borgmassivet sills in Antarctica support the concept that the Kalahari craton and Grunehogna terrane were adjoined at 1.11 Ga.The timing of the Umkondo province indicates there was localised lithospheric extension and upwelling asthenospheric mantle during a time of dominantly compressional tectonics on Earth at the end of the‘boring billion’.展开更多
The Niangzhong diabase dikes,dated at 138.1±0.4 Ma,are located within the outcrop area of the Comei large igneous province(LIP).These diabase samples can be divided into two groups:samples in Group 1 show varying...The Niangzhong diabase dikes,dated at 138.1±0.4 Ma,are located within the outcrop area of the Comei large igneous province(LIP).These diabase samples can be divided into two groups:samples in Group 1 show varying MgO(1.50 wt.%-10.25 wt.%)and TiO_(2)(0.85 wt.%-4.63 wt.%)contents,and enriched initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7056-0.7112,ε_(Nd)(t)=-0.3-+3.8),with OIB-like REEs and trace elements patterns,resulting from low degree melting of garnet-bearing lherzolite mantle sources;in contrast,samples in Group 2 show limited MgO(4.14 wt.%-7.75 wt.%)and TiO_(2)(0.98 wt.%-1.69 wt.%)contents,and depleted initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7075-0.7112,ε_(Nd)(t)=+5.5-+6.2),with N-MORB-like REEs and trace elements patterns,resulting from relatively high degree melting of spinel-bearing lherzolite mantle source.Combined with the published representative data about Comei LIP,we summarize that the source components for Comei LIP products include OIB end-member,enriched OIB end-member,and N-MORB end-member,respectively.Melts modeling suggests that magmas in the Comei LIP evolve in a relatively high oxygen fugacity condition,which influenced their fractionation sequences and led to systematic changes of TiO_(2)contents,Ti/Y and Ti/Ti*ratios.From the spatial and temporal distribution of above three end-member samples,deep process of Kerguelen plume during the Comei LIP formation can be interpreted as the interaction among the Kerguelen plume,the overlying lithospheric mantle,and the upwelling asthenosphere.The magmatism of Comei LIP began at~140 Ma and then lasted and peaked at~132 Ma with the progressively lithospheric thinning of eastern Gondwana upon the impact of Kerguelen plume.展开更多
The ultramafic dikes in the Tarim large igneous province(Tarim LIP), exposed in the Xiaohaizi area in the northwestern Tarim Basin of northwestern China, have porphyritic textures, and the olivine and clinopyroxene ...The ultramafic dikes in the Tarim large igneous province(Tarim LIP), exposed in the Xiaohaizi area in the northwestern Tarim Basin of northwestern China, have porphyritic textures, and the olivine and clinopyroxene are as the major phenocryst phases. The groundmass therein consists of clinopyroxene, plagioclase and Fe-Ti oxides, with the cryptocrystalline texture. The olivine phenocrysts in one typical ultramafic dike have Fo(Mg/(Mg+Fe)) numbers ranging from 73 to 85, which are not in equilibrium with the olivine(Mg# of 89) from the host rock crystalized. Combined with microscope observation, both the olivine and clinopyroxene phenocrysts as well as some Fe-Ti oxides in the ultramafic rock are accounted as cumulates. The liquid(parental magma) composition of SiO2 of 45.00 wt.%–48.82 wt.%, MgO of 9.93 wt.%– 18.56 wt.%, FeO of 5.85 wt.%–14.17 wt.%, CaO of 7.54 wt.%–11.52 wt.%, Al2O3 of 8.70 wt.%–11.62 wt.% and TiO2 of 0.00 wt.%–3.43 wt.% in the Xiaohaizi ultramafic rock was estimated by mass balance, and the results show a reasonable liquid proportion in the cumulate-bearing ultramafic dike(ca. 45%–60% in the whole rock). The estimated parental magma composition corresponds to a melting temperature of 1 300–1 550 oC, which is equal or higher than those of a normal asthenosphere mantle, supporting the involvement of a mantle plume. Combined with other previous studies, an evolution model for the formation processes of the Xiaohaizi ultramafic dike of the Tarim LIP is proposed.展开更多
Plume-lithosphere interactions are key in the coupling of deep Earth and surface processes,impacting deformation and evolution of sedimentary basins and continental topography at different spatial scales(Cloetingh et ...Plume-lithosphere interactions are key in the coupling of deep Earth and surface processes,impacting deformation and evolution of sedimentary basins and continental topography at different spatial scales(Cloetingh et al.,2022,2023).The North Atlantic region is a prime example of the interaction between plate tectonic movements and thermal instabilities in the Earth's mantle.The opening of the Labrador Sea/Baffin Bay and the North Atlantic,the widespread volcanism and the localized uplift of the topography in Greenland and the North Atlantic are traditionally attributed to the thermal effect of the Iceland mantle plume.展开更多
基金National Natural Sciences Foundation of China (49973012 and 40104003).
文摘Based on the former workers' study results such as numerical simulation of fluid mechanics, seismic tomography of the whole earth and igneous rocks, the basie characteristics of mantle plumes are summarized in detail, namely the mantle plume, from the D" layer near the core-mantle boundary (CMB) of 2900 km deep, is characterized by the shape of large head and thin narrow conduit, by the physical property of high temperature and low viscosity. The LIP (large igneous province) is the best exhibition when the mantle plume ascends to the surface. According to the basie characteristics of the mantle plumes and the LIP, as well as the temporal-spatial relationships between the mantle plume and Continental breakup, the detailed research on petrology, geochemistry, temporal-spatial distribution, tectonic background of the Cenozoic-Mesozoic igneous rocks and gravity anomaly distribution in East China has been done. As a result, the Mesozoic igneous rocks in Southeast China should not be regarded as an example of typical LIP related to mantle plumes, for their related characteristics are not consistent with those of the typical LIPs related to mantle plumes. The Cenozoic igneous rocks in Northeast China have no the typical characteristics of mantle plumes and hotspots, so the Cenozoic volcanism in Northeast China might have no the direct relationships with the activity of mantle plumes.
基金supported by National Science Foundation of China(42102059 and 92055202)the China Geological Survey(DD20221817 and DD20190057)+1 种基金the basic scientific research funding in CAGS(J2204)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0702).
文摘Two suites of mafic dykes,T1193-A and T1194-A,outcrop in Gyangze area,southeast Tibet.They are in the area of Comei LIP and have indistinguishable field occurrences with two other dykes in Gyangze,T0902 dyke with 137.7±1.3 Ma zircon age and T0907 dyke with 142±1.4 Ma zircon age reported by Wang YY et al.(2016),indicating coeval formation time.Taking all the four diabase dykes into consideration,two different types,OIB-type and weak enriched-type,can be summarized.The“OIB-type”samples,including T1193-A and T0907 dykes,show OIB-like geochemical features and have initial Sr-Nd isotopic values similar with most mafic products in Comei Large Igneous Provinces(LIP),suggesting that they represent melts directly generated from the Kerguelen mantle plume.The“weak enriched-type”samples,including T1194-A and T0902 dykes,have REEs and trace element patterns showing withinplate affinity but have obvious Nb-Ta-Ti negative anomalies.They show uniform lowerεNd(t)values(−6‒−2)and higher 87Sr/86Sr(t)values(0.706‒0.709)independent of their MgO variation,indicating one enriched mantle source.Considering their closely spatial and temporal relationship with the widespread Comei LIP magmatic products in Tethyan Himalaya,these“weak enriched-type”samples are consistent with mixing of melts from mantle plume and the above ancient Tethyan Himalaya subcontinental lithospheric mantle(SCLM)in different proportions.These weak enriched mafic rocks in Comei LIP form one special rock group and most likely suggest large scale hot mantle plume-continental lithosphere interaction.This process may lead to strong modification of the Tethyan Himalaya lithosphere in the Early Cretaceous.
基金financial support from Department of Science and Technology, New Delhi in the form of research grant (ESS/16/295/2006) to KRH and NVCR is acknowledged
文摘Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis.
基金supported by the National Basic Research Program of China(Grant No.2011CB808904)the National Natural Science Foundation of China(Grants Nos.41274070,41474068)
文摘The Emeishan large igneous province(ELIP) in SW China is interpreted to be associated with an ancient mantle plume. Most of the constraints on the role of mantle plume in the generation of the Emeishan flood basalts were provided by geological and geochemical methods, but the geophysical investigation is very limited. In order to better understand the deep structure and features of ELIP, we have studied the crustal velocity structure using the data acquired from the Lijiang-Panzhihua-Qingzhen wide-angle seismic profile. This profile crosses the three sub-zones of the ELIP(the inner, intermediate, and outer zones), divided based on the differential erosion and uplift of the Maokou limestone. The results provided by the active source seismic experiment demonstrate:(1) The average depth of the crystalline basement along the profile is about 2 km.(2) The middle crust in the Inner Zone is characterized by high-velocity anomalies, with the average velocity of 6.2-6.6 km/s, which is about 0.1– 0.2 km/s higher than the normal one. The velocity of the lower crust in the inner zone is 6.9-7.2 km/s, higher than those observed in the intermediate and outer zones(6.7-7.0 km/s). Relatively low velocity anomalies appear in the upper, middle and lower crusts near the junction of the inner zone and intermediate zone, probably due to the effect of the Xiaojiang fault(XJF).(3) The average velocity of the crust is comparatively low on both sides of XJF, especially on the east side, and the average velocity of the consolidated continental crust is also low there. This may suggest that the XJF extends at least down to 40 km deep, even beyond through the crust.(4) The depth to the Moho discontinuity decrease gradually from 47-53 km in the inner zone, via 42-50 km in the intermediate zone to 38-42 km in the outer zone. In the inner zone, the Moho uplifts locally and the(consolidated) crust is characterized by high-velocity anomalies, which are likely related to intensive magma intrusion and underplating associated with melting of plume head. Overall the crustal velocity structure in the study area recorded the imprint left by the Permian Emeishan mantle plume.
基金supported by NSC grant 102-2628-M-003-001-MY4 to JGS
文摘The late Permian Emeishan large igneous province (EL1P) covers -0.3× 10-6 kmL of the western margin of the Yangtze Block and Tibetan Plateau with displaced, correlative units in northern Vietnam (Song Da zone). The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian (-260 Ma) mass extinction. The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered mafic- ultramafic and silicic plutonic rocks exposed. The EL1P is divided into three nearly concentric zones (i.e. inner, middle and outer) which correspond to progressively thicker crust from the inner to the outer zone. The eruptive age of the ELIP is constrained by geological, paleomagnetic and geochronological evidence to an interval of 〈3 Ma. The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle (i.e. asthenosphere or mantle plume) sources or both. The range of Sr (Isr ≈ 0.7040-0.7132), Nd (ENd(t) ≈ -14 tO +8), Pb (206-pb/204-pb1 ≈ 17.9-20.6) and Os (Yos ≈ -5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compo- sitions suggests that there is a sub-lithospheric mantle component in the system. The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting, crustal melting or by interactions between mafic and crustal melts. The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion. The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing (e.g. uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived, plume-like upwelling of mantle-derived magmas. The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota durin~ the late Caoitanian.
文摘Large igneous provinces (LIPs) are considered a relevant cause for mass extinctions of marine life throughout Earth's history. Their flood basalts and associated intrusions can cause significant release of SO4 and CO2 and consequently, cause major environmental disruptions. Here, we reconstruct the long-term periodic pattern of LIP emplacement and its impact on ocean chemistry and biodiversity from δ34Ssulfate of the last 520 Ma under particular consideration of the preservation limits of LIP records. A combination of cross-wavelet and other time-series analysis methods has been applied to quantify a potential chain of linkage between LIP emplacement periodicity, geochemical changes and the Phanerozoic marine genera record. We suggest a mantle plume cyclicity represented by LIP volumes (V) of V= (350-770) × 103km3sin(27πt/ 170 Ma)+ (300-650)× 103 km3 sin(2πt/64.5 Ma + 2.3) for t= time in Ma. A shift from the 64.5 Ma to a weaker -28-35 Ma LIP cyclicity during the Jurassic contributes together with probably independent changes in the marine sulfur cycle to less ocean anoxia, and a general stabilization of ocean chemistry and increasing marine biodiversity throughout the last -135 Ma. The LIP cycle pattern is coherent with marine biodiversity fluctuations corresponding to a reduction of marine biodiversity of -120 genera/Ma at 600 x 103 km3 LIP eruption volume. The 62-65 Ma LIP cycle pattern as well as excursion in -34Ssulfate and marine genera reduction suggest a not-vet identified found LIP event at - 440-450 Ma.
文摘Igneous and detrital zircons have six major U/Pb isotopic age peaks in common(2700 Ma,1875 Ma.1045 Ma,625 Ma,265 Ma and 90 Ma).For igneous rocks,each age peak is comprised of subpeaks with distinct geographic distributions and a subpeak age range per age peak≤100 Myr.There are eight major LIP age peaks(found on≥10 crustal provinces)of which only four are in common to major detrital zircon age peaks(2715 Ma,1875 Ma,825 Ma,90 Ma).Of the whole-rock Re depletion ages,58%have correspo nding detrital zircon age peaks and 55%have corresponding LIP age peaks.Ten age pea ks are fou nd in common to igneous zircon,detrital zircon,LIP,and Re depletion age time series(3225 Ma,2875 Ma,2145 Ma,2085 Ma,1985 Ma,1785 Ma,1455 Ma,1175 Ma,825 Ma,and 90 Ma).and these are very robust peaks on a global scale as recorded in both crustal and mantle rocks.About 50%of the age peaks in each of these time series correspond to predicted peaks in a 94-Myr mantle cycle,including four of the ten peaks in common to all four time series(2875 Ma,1785 Ma,825 Ma and 90 Ma).Age peak widths and subpeak ranges per age peak suggest that mantle events responsible for age peaks are<100 Myr and many<50 Myr in duration.Age peak geographic distributions show three populations(≤1000 Ma,2500-1000 Ma,>2500 Ma),with the number of new provinces in which age peaks are represented decreasing with time within each population.The breaks between the populations(at 2.5 Ga and 1 Ga)fall near the onsets of two transitions in Earth history.The First Transition may represent a change from stagnant-lid tectonics into plate tectonics and the Second Transition,the onset of subduction of continental crust.The major factor controlling geographic distribution of age peaks is the changing locations of orogeny.Before^2 Ga,age subpeaks and peaks are housed in orogens within or around the edges of crustal provinces,mostly in accretionary orogens.but beginning at 1.9 Ga,collisional orogens become more important.The coincidence in duration between magmatic flare-ups in Phanerozoic arcs and duration of age subpeaks(10-30 Myr)is consiste nt with subpeaks representing periods of enhanced arcrelated magmatism.probably caused by increased subduction flux.The correlation of isotopic age peaks between time series supports a cause and effect relationship between mantle plume activity,continental magma production at convergent margins,and crustal deformation.Correlation of over half of the detrital zircon age peaks(and six of the nine major peaks)with Re depletion age peaks supports an interpretation of the zircon peaks as crustal growth rather than selective preservation peaks.
基金The Everest Scientific Research Program of Chengdu University of Technology, China financially supported this study
文摘Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province(ELIP),southwestern China.Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection,and crustal magmas have rarely been studied.Here we investigate a suite of mafic dykes and Ⅰ-type granites that yield zircon U-Pb emplacement ages of 259.9±1.2 Ma and 259.3±1.3 Ma,respectively.The εHf(t)values of zircon from the DZ mafic dyke are–0.3 to 9.4,and their corresponding TDM1 values are in the range of 919–523 Ma.The εHf(t)values of zircon from the DSC Ⅰ-type granite are between–1 and 3,with TDM1 values showing a range of 938–782 Ma.We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time.The δ18O values of zircon from the DSC Ⅰ-type granite ranges from 4.87‰to 7.5‰.The field,petrologic,geochemical and isotopic data from our study lead to the following salient findings.(i)The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar.(ii)The DZ mafic dyke and high-Ti basalts have the same source,i.e.,the Emeishan mantle plume.The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite,with low degree partial melting(<10%).(iii)The Hf-O isotope data suggest that the DSC Ⅰ-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material.(iv)The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume,which partially melted the overlying crust,generating the felsic magma.
基金The authors thank and appreciate Qiu-li Li and Ke-jun Hou for their help in guiding the dating work.This study was supported by National Science Foundation of China(41425010,41430212)China Geological Survey Project(DD20190057)+1 种基金National Key Research and Development Project of China(2016YFC0600304)Basic scientific research fund in Institute of Geology,CAGS(J1901-1,J1901-10).
文摘A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin.
基金supported by grants from the National Natural Science Foundation of China (Nos. 41902077, 41730423 and 41921003)China Postdoctoral Science Foundation Grant (No. 2019M653103)Science and Technology Planning of Guangdong Province, China (2020B1212060055)。
文摘Magmatic Ni-Cu-(PGE) sulfide and Fe-Ti oxide deposits in plume-related large igneous provinces(LIPs)are commonly related to low-Ti and high-Ti series magmas, respectively, but the major factors that control such a relationship of metallogenic types and magma compositions are unclear. Magma fOcontrols sulfur status and relative timing of Fe-Ti oxide saturation in mafic magmas, which may help clarify this issue. Taking the Emeishan LIP as a case, we calculated the magma fOof the high-Ti and low-Ti picrites based on the olivine-spinel oxygen barometer, and the partitioning of V in olivine. The obtained fOof the high-Ti series magma(FMQ + 1.1 to FMQ + 2.6) is higher than that of the low-Ti series magma(FMQ-0.5to FMQ + 0.5). The magma fOof the high-Ti and low-Ti picrites containing Fo > 90 olivine reveals that the mantle source of the high-Ti series is likely more oxidized than that of the low-Ti series. The results using the ’lambda REE’ approach show that the high-Ti series may have been derived from relatively oxidized mantle with garnet pyroxenite component. The S contents at sulfide saturation(SCSS) of the two series magmas were calculated based on liquid compositions obtained from the alpha Melts modeling, and the results show that the low-Ti series magma could easily attain the sulfide saturation as it has low fOwith S being dominantly as S. In contrast, the oxidized high-Ti series magma is difficult to attain the sulfide saturation, but could crystallize Fe-Ti oxides at magma MgO content of ~7.0 wt.%. Thus, contrasting magma fOof low-Ti and high-Ti series in plume-related LIPs may play an important role in producing two different styles of metallogeny.
文摘The Mesoproterozoic(1.11 Ga)Umkondo large igneous province(LIP)in southern Africa and Antarctica was emplaced in<5 Myr and is dominated by low-Ti tholeiitic doleritic-gabbroic sills.It is of particular interest because it is the least studied LIP in southern Africa with both sublithospheric and lithospheric mantle sources proposed and it coincides with the early assembly of Rodinia,so it has importance in understanding the nature of magmatism and tectonics in and around the Kalahari craton during the Mesoproterozoic.In this study,we compiled a large database of existing(~750)and new(~100)major and trace element data for the Umkondo province,as well as 42 new Sr-Nd isotopic measurements,to provide constraints on its magma sources and geochemical evolution.Major element compositional variations in the low-Ti tholeiites are explained by low-pressure(1 kbar)three-phase fractional crystallisation(olivine,clinopyroxene and plagioclase)of a parent magma with~10 wt.%MgO in oxidising conditions(QFM+1).Inverse models show that the low-Ti tholeiitic magmas were derived as residual melts after the crystallization of 12%-33%olivine from primary komatiitic-basaltic magmas(up to~20 wt.%MgO)in equilibrium with mantle olivine(Fo90).Low Sm/Yb and TiO2/Yb-Nb/Yb indicate that the primary magmas were derived by 2%-20%shallow(40-50 km)partial melting of spinel lherzolite.High Sm/Yb is restricted to dyke swarms and may imply limited magma production from deeper(up to~70 km)garnet lherzolite-like sources.The low-Ti tholeiites of the Umkondo province are enriched in large ion lithophile elements(Rb-Sr-Cs-K)and depleted in high-field strength elements(Zr-Hf-Nb-Ta),indicating the involvement of crustal material and/or the subcontinental lithospheric mantle.This is supported by covariations in Th/Nb,Nb/Yb,Nb/La and Ce/Sm with generally negativeΔNb.Sr-Nd isotopes lend support to the notion that the Umkondo magmas were derived from depleted and/or enriched sublithospheric mantle sources and subsequently contaminated by enriched lithospheric material during emplacement(initial(at 1.11 Ga)^(87)Sr/^(86)Sr between 0.704820 and 0.737464 andεNd between-8.9 and+5.3).The Vredefort sills are significant as they display the most depleted Sr-Nd isotopic signatures(average initial ^(87)Sr/^(86)Sr of 0.705342 and averageεNd of 0.4)and are the least contaminated magma suite in the Umkondo province.Because of(i)the large volume of low-Ti magmas,(ii)evidence of a primary hot and MgO-rich(komatiitic)magma,and(iii)the short duration of magmatism,we suggest that the Umkondo province was formed by plume-induced melting of the sublithospheric mantle beneath the Kalahari craton in an extensional setting.This contrasts with previous suggestions that the heat source developed in response to the“thermal insulation”of the mantle beneath a thickened Kalahari craton in the absence of a mantle plume.There is further evidence from the elevated Zn/Fe that the sublithospheric mantle was lithologically heterogeneous and consisted of mixed peridotite and pyroxenite domains.There is a general lack of ultramafic cumulates in the low-Ti magma suite that may imply there was deeper ponding and storage of the primary magmas that fractionated large quantities of ultramafic rocks.There is also a paucity of high-Ti rocks in the Umkondo province that may reflect limited direct melting of the lithospheric mantle or that they are simply not as well-preserved in this province compared to the Karoo province.The similar trace element and Sr-Nd isotopic compositions of the Umkondo sills in southern Africa with the Borgmassivet sills in Antarctica support the concept that the Kalahari craton and Grunehogna terrane were adjoined at 1.11 Ga.The timing of the Umkondo province indicates there was localised lithospheric extension and upwelling asthenospheric mantle during a time of dominantly compressional tectonics on Earth at the end of the‘boring billion’.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(No.2019QZKK0702)the National Natural Science Foundation of China(Nos.92055202,41873023,42102059)+3 种基金the China Geological Survey(No.DD20190057)the National Key Research and Development Project of China(No.2016YFC0600304)the Basic Scientific Research Fund of Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources(Nos.J1901-1,J190110)the National Foundation from China Scholarship Council。
文摘The Niangzhong diabase dikes,dated at 138.1±0.4 Ma,are located within the outcrop area of the Comei large igneous province(LIP).These diabase samples can be divided into two groups:samples in Group 1 show varying MgO(1.50 wt.%-10.25 wt.%)and TiO_(2)(0.85 wt.%-4.63 wt.%)contents,and enriched initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7056-0.7112,ε_(Nd)(t)=-0.3-+3.8),with OIB-like REEs and trace elements patterns,resulting from low degree melting of garnet-bearing lherzolite mantle sources;in contrast,samples in Group 2 show limited MgO(4.14 wt.%-7.75 wt.%)and TiO_(2)(0.98 wt.%-1.69 wt.%)contents,and depleted initial isotope compositions(^(87)Sr/^(86)Sr(t)=0.7075-0.7112,ε_(Nd)(t)=+5.5-+6.2),with N-MORB-like REEs and trace elements patterns,resulting from relatively high degree melting of spinel-bearing lherzolite mantle source.Combined with the published representative data about Comei LIP,we summarize that the source components for Comei LIP products include OIB end-member,enriched OIB end-member,and N-MORB end-member,respectively.Melts modeling suggests that magmas in the Comei LIP evolve in a relatively high oxygen fugacity condition,which influenced their fractionation sequences and led to systematic changes of TiO_(2)contents,Ti/Y and Ti/Ti*ratios.From the spatial and temporal distribution of above three end-member samples,deep process of Kerguelen plume during the Comei LIP formation can be interpreted as the interaction among the Kerguelen plume,the overlying lithospheric mantle,and the upwelling asthenosphere.The magmatism of Comei LIP began at~140 Ma and then lasted and peaked at~132 Ma with the progressively lithospheric thinning of eastern Gondwana upon the impact of Kerguelen plume.
基金funded by the National Basic Research of China (Nos. 2011CB808902 and 2007CB411303)the National Natural Science Foundation of China (Nos. 41541018, 40930315 and 41072048)+1 种基金the Doctoral Program of Higher Education of China (No. 20110101110001)the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, CAS (No. 201208)
文摘The ultramafic dikes in the Tarim large igneous province(Tarim LIP), exposed in the Xiaohaizi area in the northwestern Tarim Basin of northwestern China, have porphyritic textures, and the olivine and clinopyroxene are as the major phenocryst phases. The groundmass therein consists of clinopyroxene, plagioclase and Fe-Ti oxides, with the cryptocrystalline texture. The olivine phenocrysts in one typical ultramafic dike have Fo(Mg/(Mg+Fe)) numbers ranging from 73 to 85, which are not in equilibrium with the olivine(Mg# of 89) from the host rock crystalized. Combined with microscope observation, both the olivine and clinopyroxene phenocrysts as well as some Fe-Ti oxides in the ultramafic rock are accounted as cumulates. The liquid(parental magma) composition of SiO2 of 45.00 wt.%–48.82 wt.%, MgO of 9.93 wt.%– 18.56 wt.%, FeO of 5.85 wt.%–14.17 wt.%, CaO of 7.54 wt.%–11.52 wt.%, Al2O3 of 8.70 wt.%–11.62 wt.% and TiO2 of 0.00 wt.%–3.43 wt.% in the Xiaohaizi ultramafic rock was estimated by mass balance, and the results show a reasonable liquid proportion in the cumulate-bearing ultramafic dike(ca. 45%–60% in the whole rock). The estimated parental magma composition corresponds to a melting temperature of 1 300–1 550 oC, which is equal or higher than those of a normal asthenosphere mantle, supporting the involvement of a mantle plume. Combined with other previous studies, an evolution model for the formation processes of the Xiaohaizi ultramafic dike of the Tarim LIP is proposed.
文摘Plume-lithosphere interactions are key in the coupling of deep Earth and surface processes,impacting deformation and evolution of sedimentary basins and continental topography at different spatial scales(Cloetingh et al.,2022,2023).The North Atlantic region is a prime example of the interaction between plate tectonic movements and thermal instabilities in the Earth's mantle.The opening of the Labrador Sea/Baffin Bay and the North Atlantic,the widespread volcanism and the localized uplift of the topography in Greenland and the North Atlantic are traditionally attributed to the thermal effect of the Iceland mantle plume.