In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on...In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.展开更多
Some tube hydroforming process tests and further research work were conducted to manufacture hollow guide vane liners( made of super alloy GH3030).The relative thickness( t0/ OD) of the tubular blank is approximately ...Some tube hydroforming process tests and further research work were conducted to manufacture hollow guide vane liners( made of super alloy GH3030).The relative thickness( t0/ OD) of the tubular blank is approximately 0. 01,and the maximum expansion ratio( Dmax/ OD) of the needed part is more than 40%,and the length to diameter ratio of the expansion regionis more than 3. 0. It is very hard to manufacture this kind of ultra-thin-wall,curved axis and large expansion ratio tubular part without fracture and wrinkles. The success of the process is highly dependent on useful wrinkles with appropriate internal pressure and axial feeding. A simplified finite element model and a theoretical model are used for detecting the deformation behavior and forming laws. Further study results demonstrate that the useful wrinkles do not appear at the same time and middle-wrinkles need bigger axial force than tube-end-wrinkles and feeding-wrinkles. The wrinkles can transfer bigger axial force after its wave peak has come into contact with the die inner surface. The thickness thinning rate of the element at the peak is bigger than that at the trough. With the increase of the axial and hoop stress ratio,the critical buckling stress also increases. Microstructure examination results show that the grain size in the maximum thinning zone has been stretched and refined after the large deformation and annealing treatment.The process is feasible and the finished part is qualified.展开更多
基金Project(51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the Funds for New Century Excellent Talents in University of China+1 种基金Project(12TD007)supported by the Scientific Research Innovation Team Program of Sichuan Colleges and Universities,ChinaProject(2014TD0025)supported by the Youth Scientific Research Innovation Team Program of Sichuan Province,China
文摘In order to meet the high temperature environment requirement of deep and superdeep well exploitation, a technology of large length-to-diameter ratio metal stator screw lining meshing with rotor is presented. Based on the elastic-plasticity theory, and under the consideration of the effect of tube size, material mechanical parameters, friction coefficient and loading paths, the external pressure plastic forming mechanical model of metal stator screw lining is established, to study the optimal loading path of metal stator lining tube hydroforming process. The results show that wall thickness reduction of the external pressure tube hydroforming(THF) is about 4%, and three evaluation criteria of metal stator screw lining forming quality are presented: fillet stick mold coefficient, thickness relative error and forming quality coefficient. The smaller the three criteria are, the better the forming quality is.Each indicator has a trend of increase with the loading rate reducing, and the adjustment laws of die arc transition zone equidistance profile curve are acquired for improving tube forming quality. Hence, the research results prove the feasibility of external pressure THF used for processing high-accuracy large length-to-diameter ratio metal stator screw lining, and provide theoretical basis for designing new kind of stator structure which has better performance and longer service life.
基金Sponsored by the Major State BasicResearch Development Program(Grant No.613152)the International Cooperation of RFBR-NSFC(Grant No.51111120088)
文摘Some tube hydroforming process tests and further research work were conducted to manufacture hollow guide vane liners( made of super alloy GH3030).The relative thickness( t0/ OD) of the tubular blank is approximately 0. 01,and the maximum expansion ratio( Dmax/ OD) of the needed part is more than 40%,and the length to diameter ratio of the expansion regionis more than 3. 0. It is very hard to manufacture this kind of ultra-thin-wall,curved axis and large expansion ratio tubular part without fracture and wrinkles. The success of the process is highly dependent on useful wrinkles with appropriate internal pressure and axial feeding. A simplified finite element model and a theoretical model are used for detecting the deformation behavior and forming laws. Further study results demonstrate that the useful wrinkles do not appear at the same time and middle-wrinkles need bigger axial force than tube-end-wrinkles and feeding-wrinkles. The wrinkles can transfer bigger axial force after its wave peak has come into contact with the die inner surface. The thickness thinning rate of the element at the peak is bigger than that at the trough. With the increase of the axial and hoop stress ratio,the critical buckling stress also increases. Microstructure examination results show that the grain size in the maximum thinning zone has been stretched and refined after the large deformation and annealing treatment.The process is feasible and the finished part is qualified.