The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive...At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.展开更多
In the last several years, there has been a marked improvement in the development of new algorithms for solving Linear Goal programming (LGP). This paper presents a survey of current methods for LGP.
A Linear Programming DASH diet model for persons with hypertension has previously been formulated and daily minimum cost diet plans that satisfy the DASH diets’ tolerable intake level of the nutrients for 1500 mg a d...A Linear Programming DASH diet model for persons with hypertension has previously been formulated and daily minimum cost diet plans that satisfy the DASH diets’ tolerable intake level of the nutrients for 1500 mg a day Sodium level and different daily calorie levels were obtained using sample foods from the DASH diet eating plan chart. But the limitation in the use of linear programming model in selecting diet plans to meet specific nutritional requirements which normally results in the oversupply of certain nutrients was evident in the linear programming DASH diet plan obtained as the nutrient level of the diet plans obtained had wide deviations of from the DASH diets’ tolerable upper and lower intake level for the given calorie and sodium levels. Hence the need for a model that gives diet plans with minimized nutrients’ level deviations from the DASH diets’ tolerable intake level for different daily calorie and sodium level at desired cost. A weighted Goal Programming DASH diet model that minimizes the daily cost of the DASH eating plan as well as deviations of the diets’ nutrients content from the DASH diet’s tolerable intake levels is hereby presented in this work. The formulated weighted goal programming DASH diet model is further illustrated using chosen sample foods from the DASH food chart as used in the work on the linear programming DASH diet model for a 1500 mg sodium level and 2000 calories a day diet plan as well as for 1800, 2200, 2400, 2600, 2800 and 3000 daily calorie levels. A comparison of the DASH nutrients’ composition of the weighted Goal Programming DASH diet plans and those of the linear programming DASH diet plans were carried out at this sodium level and the different daily calorie levels. It was evident from the results of the comparison that the weighted goal programming DASH diet plans has minimized deviations from the DASH diet’s tolerable intake levels than those of the linear programming DASH diet plans.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed app...An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed approach is significantly faster than previous active-set and standard linear programming algorithms.展开更多
The Dantzig/Wolfe linear programming decomposition algorithm has had important economicinterpretations as well as a widespread impact on solving large scale linear programming problem.Inthis paper we consider a simila...The Dantzig/Wolfe linear programming decomposition algorithm has had important economicinterpretations as well as a widespread impact on solving large scale linear programming problem.Inthis paper we consider a similar underlying structure,where however there is only one couplinginequality or equation.With this simplification,we demonstrate how to achieve an equitable partitionof the overall coupling resource to individual subproblem constraints through a simple iterationprocedure which appears to be very efficient.展开更多
The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dyn...The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.展开更多
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.
文摘At the first sight it seems that advanced operation research is not used enough in continuous production systems as comparison with mass production, batch production and job shop systems, but really in a comprehensive evaluation the advanced operation research techniques can be used in continuous production systems in developing countries very widely, because of initial inadequate plant layout, stage by stage development of production lines, the purchase of second hand machineries from various countries, plurality of customers. A case of production system planning is proposed for a chemical company in which the above mentioned conditions are almost presented. The goals and constraints in this issue are as follows: (1) Minimizing deviation of customer's requirements. (2) Maximizing the profit. (3) Minimizing the frequencies of changes in formula production. (4) Minimizing the inventory of final products. (5) Balancing the production sections with regard to rate in production. (6) Limitation in inventory of raw material. The present situation is in such a way that various techniques such as goal programming, linear programming and dynamic programming can be used. But dynamic production programming issues are divided into two categories, at first one with limitation in production capacity and another with unlimited production capacity. For the first category, a systematic and acceptable solution has not been presented yet. Therefore an innovative method is used to convert the dynamic situation to a zero- one model. At last this issue is changed to a goal programming model with non-linear limitations with the use of GRG algorithm and that's how it is solved.
文摘In the last several years, there has been a marked improvement in the development of new algorithms for solving Linear Goal programming (LGP). This paper presents a survey of current methods for LGP.
文摘A Linear Programming DASH diet model for persons with hypertension has previously been formulated and daily minimum cost diet plans that satisfy the DASH diets’ tolerable intake level of the nutrients for 1500 mg a day Sodium level and different daily calorie levels were obtained using sample foods from the DASH diet eating plan chart. But the limitation in the use of linear programming model in selecting diet plans to meet specific nutritional requirements which normally results in the oversupply of certain nutrients was evident in the linear programming DASH diet plan obtained as the nutrient level of the diet plans obtained had wide deviations of from the DASH diets’ tolerable upper and lower intake level for the given calorie and sodium levels. Hence the need for a model that gives diet plans with minimized nutrients’ level deviations from the DASH diets’ tolerable intake level for different daily calorie and sodium level at desired cost. A weighted Goal Programming DASH diet model that minimizes the daily cost of the DASH eating plan as well as deviations of the diets’ nutrients content from the DASH diet’s tolerable intake levels is hereby presented in this work. The formulated weighted goal programming DASH diet model is further illustrated using chosen sample foods from the DASH food chart as used in the work on the linear programming DASH diet model for a 1500 mg sodium level and 2000 calories a day diet plan as well as for 1800, 2200, 2400, 2600, 2800 and 3000 daily calorie levels. A comparison of the DASH nutrients’ composition of the weighted Goal Programming DASH diet plans and those of the linear programming DASH diet plans were carried out at this sodium level and the different daily calorie levels. It was evident from the results of the comparison that the weighted goal programming DASH diet plans has minimized deviations from the DASH diet’s tolerable intake levels than those of the linear programming DASH diet plans.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
文摘An efficient active-set approach is presented for both nonnegative and general linear programming by adding varying numbers of constraints at each iteration. Computational experiments demonstrate that the proposed approach is significantly faster than previous active-set and standard linear programming algorithms.
文摘The Dantzig/Wolfe linear programming decomposition algorithm has had important economicinterpretations as well as a widespread impact on solving large scale linear programming problem.Inthis paper we consider a similar underlying structure,where however there is only one couplinginequality or equation.With this simplification,we demonstrate how to achieve an equitable partitionof the overall coupling resource to individual subproblem constraints through a simple iterationprocedure which appears to be very efficient.
文摘The mathematical and statistical modeling of the problem of poverty is a major challenge given Burundi’s economic development. Innovative economic optimization systems are widely needed to face the problem of the dynamic of the poverty in Burundi. The Burundian economy shows an inflation rate of -1.5% in 2018 for the Gross Domestic Product growth real rate of 2.8% in 2016. In this research, the aim is to find a model that contributes to solving the problem of poverty in Burundi. The results of this research fill the knowledge gap in the modeling and optimization of the Burundian economic system. The aim of this model is to solve an optimization problem combining the variables of production, consumption, budget, human resources and available raw materials. Scientific modeling and optimal solving of the poverty problem show the tools for measuring poverty rate and determining various countries’ poverty levels when considering advanced knowledge. In addition, investigating the aspects of poverty will properly orient development aid to developing countries and thus, achieve their objectives of growth and the fight against poverty. This paper provides a new and innovative framework for global scientific research regarding the multiple facets of this problem. An estimate of the poverty rate allows good progress with the theory and optimization methods in measuring the poverty rate and achieving sustainable development goals. By comparing the annual food production and the required annual consumption, there is an imbalance between different types of food. Proteins, minerals and vitamins produced in Burundi are sufficient when considering their consumption as required by the entire Burundian population. This positive contribution for the latter comes from the fact that some cows, goats, fishes, ···, slaughtered in Burundi come from neighboring countries. Real production remains in deficit. The lipids, acids, calcium, fibers and carbohydrates produced in Burundi are insufficient for consumption. This negative contribution proves a Burundian food deficit. It is a decision-making indicator for the design and updating of agricultural policy and implementation programs as well as projects. Investment and economic growth are only possible when food security is mastered. The capital allocated to food investment must be revised upwards. Demographic control is also a relevant indicator to push forward Burundi among the emerging countries in 2040. Meanwhile, better understanding of the determinants of poverty by taking cultural and organizational aspects into account guides managers for poverty reduction projects and programs.