In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,wa...In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,water contents and temperatures.The results indicate that the relationship between shear displacement and shear stress changed from strain-softening at lower normal pressures to strain-hardening at higher normal pressures,in both unfrozen and frozen states.This phenomenon was mainly due to the shear dilatation deformation effect.The shear displacement-shear stress curves show similar stages.Besides,the shear stress rapidly increased and there was not an increment in the shear displacement during the initial stage of the shear process in the frozen state.In both the unfrozen or frozen states at the same water contents,the shear strength increased with increasing normal pressure.展开更多
A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cak...A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength.展开更多
基金supported by the National Natural Science Foundation of China (No. 51378057)
文摘In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,water contents and temperatures.The results indicate that the relationship between shear displacement and shear stress changed from strain-softening at lower normal pressures to strain-hardening at higher normal pressures,in both unfrozen and frozen states.This phenomenon was mainly due to the shear dilatation deformation effect.The shear displacement-shear stress curves show similar stages.Besides,the shear stress rapidly increased and there was not an increment in the shear displacement during the initial stage of the shear process in the frozen state.In both the unfrozen or frozen states at the same water contents,the shear strength increased with increasing normal pressure.
基金Projects(51978672,51878671)supported by the National Natural Science Foundation of ChinaProject(2017zzts159)supported by the Graduate Innovation Program of Central South University,China+1 种基金Project(HNTY2021K09)supported by the Open Research Project of the Hunan Tieyuan Civil Engineering Testing Co.Ltd.,China。
文摘A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength.