Crystalline rare-earth(RE)carbonates having large particle size were prepared from the lixivium of weathered crust elution-deposited rare-earth ores using the precipitation method with ammonium bicarbonate as the prec...Crystalline rare-earth(RE)carbonates having large particle size were prepared from the lixivium of weathered crust elution-deposited rare-earth ores using the precipitation method with ammonium bicarbonate as the precipitant.Their chemical composition was studied using elemental and thermogravimetric analyses(TGA),and their structure and morphology were characterized using Fourier transform infrared(FTIR)spectroscopy,X-ray diffraction(XRD),and scanning electron microscopy(SEM).The results demonstrate that the crystalline rareearth carbonate is a hydrated basic carbonate or oxycarbonate and not astable intermediate carbonate in the process of thermal decomposition.The particle size of crystalline rare-earth carbonates with large particle size is in the range of 50–200μm.With an RE2O3 content of up to 95wt%,the quality of crystalline rare-earth carbonates is higher compared to the Chinese National Standard(GB/T 28882–2012).The quality of the product is superior to the Chinese National Standard.展开更多
The pneumatic conveying system of coal particles can greatly reduce the dust and improve the environmental quality at underground mining workface and the surrounding of coal enterprises.The particle shape and the inte...The pneumatic conveying system of coal particles can greatly reduce the dust and improve the environmental quality at underground mining workface and the surrounding of coal enterprises.The particle shape and the interaction coefficients between particles and the contact surface play important roles in the pneumatic conveying and CFD-DEM simulation.In order to build the semblable shape models and obtain the accurate interaction coefficients of large coal particles,this article establishes the con tact model by the particle overlap method and describes the mathematical model of the shape characteristics for large coal particle.The particle models are simulated by adopting the multi-index mixed orthogonal experiments.The accumulation density,the porosity and the error between simulation and experiment are taken as the indexes,and the particle models and the particle contact coefficients are taken as the orthogonal test factors.As a result,three more accurate particle models and their interaction coefficients are obtained,which provide the model basis for the pneumatic conveying of large coal particles.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51964021 and 51774156)the Jiangxi Province Nature Science Foundation,China(No.20181BAB206020)and China’s National Key R&D Plan Project(No.2019YFC0605000).
文摘Crystalline rare-earth(RE)carbonates having large particle size were prepared from the lixivium of weathered crust elution-deposited rare-earth ores using the precipitation method with ammonium bicarbonate as the precipitant.Their chemical composition was studied using elemental and thermogravimetric analyses(TGA),and their structure and morphology were characterized using Fourier transform infrared(FTIR)spectroscopy,X-ray diffraction(XRD),and scanning electron microscopy(SEM).The results demonstrate that the crystalline rareearth carbonate is a hydrated basic carbonate or oxycarbonate and not astable intermediate carbonate in the process of thermal decomposition.The particle size of crystalline rare-earth carbonates with large particle size is in the range of 50–200μm.With an RE2O3 content of up to 95wt%,the quality of crystalline rare-earth carbonates is higher compared to the Chinese National Standard(GB/T 28882–2012).The quality of the product is superior to the Chinese National Standard.
基金the Natural Science Foundation ofjiangsu Province(BK20170241)the National Natural Science Foundation of China(51705222 and 51675521)supported by the State Key Laboratory of Process Automation in Mining&Metallurgy and the Beijing Key Laboratory of Process Automation in Mining&Metallurgy(BGRIMM-KZSKL-2019-07).
文摘The pneumatic conveying system of coal particles can greatly reduce the dust and improve the environmental quality at underground mining workface and the surrounding of coal enterprises.The particle shape and the interaction coefficients between particles and the contact surface play important roles in the pneumatic conveying and CFD-DEM simulation.In order to build the semblable shape models and obtain the accurate interaction coefficients of large coal particles,this article establishes the con tact model by the particle overlap method and describes the mathematical model of the shape characteristics for large coal particle.The particle models are simulated by adopting the multi-index mixed orthogonal experiments.The accumulation density,the porosity and the error between simulation and experiment are taken as the indexes,and the particle models and the particle contact coefficients are taken as the orthogonal test factors.As a result,three more accurate particle models and their interaction coefficients are obtained,which provide the model basis for the pneumatic conveying of large coal particles.