Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the b...Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery.展开更多
Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacemen...Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.展开更多
In order to predict electromechanical equipments' nonlinear and non-stationary condition effectively, max Lyapunov exponent is introduced to the fault trend prediction of large rotating mechanical equipments based on...In order to predict electromechanical equipments' nonlinear and non-stationary condition effectively, max Lyapunov exponent is introduced to the fault trend prediction of large rotating mechanical equipments based on chaos theory. The predict method of chaos time series and two methods of proposing f and F are dis- cussed. The arithmetic of max prediction time of chaos time series is provided. Aiming at the key part of large rotating mechanical equipments-bearing, used this prediction method the simulation experiment is carried out. The result shows that this method has excellent performance for condition trend prediction.展开更多
This paper reports on the design, fabrication,and performance of a high-reflectivity large-rotation mirror array for MEMS (micro-electro-mechanical system) 16 × 16 optical switches. The mirror in the array can ...This paper reports on the design, fabrication,and performance of a high-reflectivity large-rotation mirror array for MEMS (micro-electro-mechanical system) 16 × 16 optical switches. The mirror in the array can enlarge its rotation an- gles up to 90° and keep a steady state to steer the optical signal. According to the large-rotation behavior, an electro- mechanical model of the mirror is presented. By monolithic integration of fiber grooves and mirrors fabricated by a sur- face and bulk hybrid micromachining process, the coarse passive alignment of fiber-mirror-fiber can be achieved. The re- flectivity of the mirror is measured to be 93.1% ~96.3%. The switches demonstrate that the smallest fiber-mirror-fiber insertion loss is 2. ldB using OptiFocusTM collimating lensed fibers. Moreover,only about +- 0.01dB oscillating amplitude of insertion loss is provoked after the device is tested for 15min for 5-90Hz in the vertical vibration amplitude of 3mm.展开更多
In this paper, the polar decomposition of a deformation gradient tensor is analyzed in detail. The four new methods for polar decompositioncomputation are given: (1) the iterated method, (2) the principal invariant...In this paper, the polar decomposition of a deformation gradient tensor is analyzed in detail. The four new methods for polar decompositioncomputation are given: (1) the iterated method, (2) the principal invariant's method, (3) the principal rotation axis' s method, (4) the coordinate transformation's method. The iterated method makes it possible to establish the nonlinear finite element method based on polar decomposition. Furthermore, the material time derivatives of the stretch tensor and the rotation tensor are obtained by explicit and simple expressions.展开更多
In this paper the authors present a derivation of a back-scatter rotational Large Eddy Simulation model,which is the extension of the Baldwin&Lomax model to nonequilibrium problems.The model is particularly design...In this paper the authors present a derivation of a back-scatter rotational Large Eddy Simulation model,which is the extension of the Baldwin&Lomax model to nonequilibrium problems.The model is particularly designed to mathematically describe a fluid filling a domain with solid walls and consequently the differential operators appearing in the smoothing terms are degenerate at the boundary.After the derivation of the model,the authors prove some of the mathematical properties coming from the weighted energy estimates,which allow to prove existence and uniqueness of a class of regular weak solutions.展开更多
A new kind of super parametric finite elements for geometric nonlinear analysis of plates and shells is presented.Besides the nodes on the middle surface, additional virtual nodes are used to determine the normal to ...A new kind of super parametric finite elements for geometric nonlinear analysis of plates and shells is presented.Besides the nodes on the middle surface, additional virtual nodes are used to determine the normal to the middle surface.There are three displacement d.o.f.for each node of the element, and two transverse shear strains are taken as additional independent d.o.f.for each node on the middle surface.Therefore, the element is suitable for large rotation analysis of plates and shells. It can also be easily applied to the analysis of laminated and sandwich shells and plates.Numerical examples are given to show the accuracy and efficiency of the element.展开更多
基金Project supported by the National Science and Technology Major Project of China (No. 2017-V-0009)the National Natural Science Foundation of China (Nos. 12032015 and 12121002)the National Funding Program for Postdoctoral Researchers of China (No. GZC20231586)。
文摘Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery.
基金supported by the China Postdoctoral Science Foundation Funded Project (20080430038) the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (05004999200602)
文摘Using the concept of the base forces, a new finite element method (base force element method, BFEM) based on the complementary energy principle is presented for accurate modeling of structures with large displacements and large rotations. First, the complementary energy of an element is described by taking the base forces as state variables, and is then separated into deformation and rotation parts for the case of large deformation. Second, the control equations of the BFEM based on the complementary energy principle are derived using the Lagrange multiplier method. Nonlinear procedure of the BFEM is then developed. Finally, several examples are analyzed to illustrate the reliability and accuracy of the BFEM.
基金Sponsored by Key Funding Project for Science and Technology under the Beijing Municipal Education Commission(KZ200910772001)
文摘In order to predict electromechanical equipments' nonlinear and non-stationary condition effectively, max Lyapunov exponent is introduced to the fault trend prediction of large rotating mechanical equipments based on chaos theory. The predict method of chaos time series and two methods of proposing f and F are dis- cussed. The arithmetic of max prediction time of chaos time series is provided. Aiming at the key part of large rotating mechanical equipments-bearing, used this prediction method the simulation experiment is carried out. The result shows that this method has excellent performance for condition trend prediction.
文摘This paper reports on the design, fabrication,and performance of a high-reflectivity large-rotation mirror array for MEMS (micro-electro-mechanical system) 16 × 16 optical switches. The mirror in the array can enlarge its rotation an- gles up to 90° and keep a steady state to steer the optical signal. According to the large-rotation behavior, an electro- mechanical model of the mirror is presented. By monolithic integration of fiber grooves and mirrors fabricated by a sur- face and bulk hybrid micromachining process, the coarse passive alignment of fiber-mirror-fiber can be achieved. The re- flectivity of the mirror is measured to be 93.1% ~96.3%. The switches demonstrate that the smallest fiber-mirror-fiber insertion loss is 2. ldB using OptiFocusTM collimating lensed fibers. Moreover,only about +- 0.01dB oscillating amplitude of insertion loss is provoked after the device is tested for 15min for 5-90Hz in the vertical vibration amplitude of 3mm.
基金the National Natural Science Foundation of Chinathe Natural Science Foundation of Jiangxi of China in 1998.
文摘In this paper, the polar decomposition of a deformation gradient tensor is analyzed in detail. The four new methods for polar decompositioncomputation are given: (1) the iterated method, (2) the principal invariant's method, (3) the principal rotation axis' s method, (4) the coordinate transformation's method. The iterated method makes it possible to establish the nonlinear finite element method based on polar decomposition. Furthermore, the material time derivatives of the stretch tensor and the rotation tensor are obtained by explicit and simple expressions.
基金supported by the group GNAMPA of INd AM and the University of Pisa,under grantPRA 201852 UNIPI。
文摘In this paper the authors present a derivation of a back-scatter rotational Large Eddy Simulation model,which is the extension of the Baldwin&Lomax model to nonequilibrium problems.The model is particularly designed to mathematically describe a fluid filling a domain with solid walls and consequently the differential operators appearing in the smoothing terms are degenerate at the boundary.After the derivation of the model,the authors prove some of the mathematical properties coming from the weighted energy estimates,which allow to prove existence and uniqueness of a class of regular weak solutions.
文摘A new kind of super parametric finite elements for geometric nonlinear analysis of plates and shells is presented.Besides the nodes on the middle surface, additional virtual nodes are used to determine the normal to the middle surface.There are three displacement d.o.f.for each node of the element, and two transverse shear strains are taken as additional independent d.o.f.for each node on the middle surface.Therefore, the element is suitable for large rotation analysis of plates and shells. It can also be easily applied to the analysis of laminated and sandwich shells and plates.Numerical examples are given to show the accuracy and efficiency of the element.