On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding ...On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding residual stress between the simulative component and the practical component was attained. In order to verify the correctness of the relation, the investigation was done from the view of the welding experiment and the numerical simulation about the simulative component and the practical component. The results show that the distribution of welding residual stress of the simulative component is the same as that of the practical component. The ratio of welding residual stress attained by the experiment or the simulation method between the practical runner and the simulative component was compared with the ratio obtained by the similitude principles. Moreover, the error is less than 10%. This provides a new idea to predict the welding stress distribution of large practical structure by the contractible physical model, which is important for the welding experiment and the numerical simulation.展开更多
文摘On basis of the similitude principles, the conception of virtual simulative component and the auxiliary value of welding residual stress, which is deduced by the welding conduction theory, the relation of the welding residual stress between the simulative component and the practical component was attained. In order to verify the correctness of the relation, the investigation was done from the view of the welding experiment and the numerical simulation about the simulative component and the practical component. The results show that the distribution of welding residual stress of the simulative component is the same as that of the practical component. The ratio of welding residual stress attained by the experiment or the simulation method between the practical runner and the simulative component was compared with the ratio obtained by the similitude principles. Moreover, the error is less than 10%. This provides a new idea to predict the welding stress distribution of large practical structure by the contractible physical model, which is important for the welding experiment and the numerical simulation.