To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In...To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In particular,the Eulerian-Eulerian approach was employed to calculate the paint atomization and film deposition process.Different spray heights,spray angles,spray gun movement speeds,spray trajectory curvature radii,and air pressure values were considered.Numerical simulation results indicate that the angle of spray painting significantly affects the velocity of droplets near the spray surface.With an increase in the spraying angle,spraying height and spray gun movement speed,the maximum film thickness decreases to varying degrees,and the uniformity of the film thickness also continuously worsens.When the spray gun moves along an arc trajectory,at smaller arc radii,the film thickness on the inside of the arc is slightly greater than that on the outside,but the impact on the maximum film thickness is minimal.Increasing air pressure expands the coating coverage area,results in finer atomization of paint droplets,and leads to a thinner and a more uniform paint film.However,if the pressure is too high,it can cause paint splattering.Using the orthogonal experimental method,multiple sets of simulation calculations were conducted,and the combined effects of spraying height,spray angle,and spray gun movement speed on the film thickness distribution were comprehensively analyzed to determine optimal configurations.Finally,the reliability of the numerical simulations was validated through dynamic spray painting experiments.展开更多
Aspheric micro-lens array(AMLA),featured with low dispersion and diffraction-limited imaging quality,plays an important role in advanced optical imaging.Ideally,the fabrication of commercially applicable AMLAs should ...Aspheric micro-lens array(AMLA),featured with low dispersion and diffraction-limited imaging quality,plays an important role in advanced optical imaging.Ideally,the fabrication of commercially applicable AMLAs should feature low cost,high precision,large area and high speed.However,these criteria have been achieved only partially with conventional fabrication process.Herein,we demonstrate the fabrication and characterization of AMLAs based on 12-bit direct laser writing lithography,which exhibits a high fabrication speed,large area,perfect lens shape control via a three-dimensional optical proximity correction and average surface roughness lower than 6 nm.In particular,the AMLAs can be flexibly designed with customized filling factor and arbitrary off-axis operation for each single micro-lens,and the proposed pattern transfer approach with polydimethylsiloxane(PDMS)suggests a low-cost way for mass manufacturing.An auto-stereoscopic-display flexible thin film with excellent display effect has been prepared by using above technology,which exhibits a new way to provide flexible auto-stereoscopic-display at low cost.In brief,the demonstrated fabrication of AMLAs based on direct laser writing lithography reduce the complexity of AMLA fabrication while significantly increasing their performance,suggesting a new route for high-quality three-dimentional optical manufacturing towards simplified fabrication process,high precision and large scale.展开更多
Let {(ξni, ηni), 1 ≤ i ≤ n, n ≥ 1} be a triangular array of independent bivariate elliptical random vectors with the same distribution function as (S1,ρnS1 + √1- ρ2nS2), ρn ∈(0, 1), where (S1,S2) is...Let {(ξni, ηni), 1 ≤ i ≤ n, n ≥ 1} be a triangular array of independent bivariate elliptical random vectors with the same distribution function as (S1,ρnS1 + √1- ρ2nS2), ρn ∈(0, 1), where (S1,S2) is a bivariate spherical random vector. For the distribution function of radius√S12 + S22 belonging to the max-domain of attraction of the Weibull distribution, the limiting distribution of maximum of this triangular array is known as the convergence rate of p~ to 1 is given. In this paper, under the refinement of the rate of convergence of p~ to 1 and the second-order regular variation of the distributional tail of radius, precise second-order distributional expansions of the normalized maxima of bivariate elliptical triangular arrays are established.展开更多
As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable band...As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.展开更多
基金supported in part by the National Natural Science Foundation of China(51405418)in part by the Jiangsu“Qing Lan Project”Talent Project(2021)Projects of Natural Science Research in Jiangsu Higher Education Institutions(Grant No.22KJD460009).
文摘To accurately predict the film thickness distribution during dynamic spraying performed with air guns and support accordingly the development of intelligent spray painting,the spray problem was analyzed numerically.In particular,the Eulerian-Eulerian approach was employed to calculate the paint atomization and film deposition process.Different spray heights,spray angles,spray gun movement speeds,spray trajectory curvature radii,and air pressure values were considered.Numerical simulation results indicate that the angle of spray painting significantly affects the velocity of droplets near the spray surface.With an increase in the spraying angle,spraying height and spray gun movement speed,the maximum film thickness decreases to varying degrees,and the uniformity of the film thickness also continuously worsens.When the spray gun moves along an arc trajectory,at smaller arc radii,the film thickness on the inside of the arc is slightly greater than that on the outside,but the impact on the maximum film thickness is minimal.Increasing air pressure expands the coating coverage area,results in finer atomization of paint droplets,and leads to a thinner and a more uniform paint film.However,if the pressure is too high,it can cause paint splattering.Using the orthogonal experimental method,multiple sets of simulation calculations were conducted,and the combined effects of spraying height,spray angle,and spray gun movement speed on the film thickness distribution were comprehensively analyzed to determine optimal configurations.Finally,the reliability of the numerical simulations was validated through dynamic spray painting experiments.
基金supported by the National Natural Science Foundation of China(U20A6004 and 91950110)National Key R&D Program of China(2019YFB1704600).
文摘Aspheric micro-lens array(AMLA),featured with low dispersion and diffraction-limited imaging quality,plays an important role in advanced optical imaging.Ideally,the fabrication of commercially applicable AMLAs should feature low cost,high precision,large area and high speed.However,these criteria have been achieved only partially with conventional fabrication process.Herein,we demonstrate the fabrication and characterization of AMLAs based on 12-bit direct laser writing lithography,which exhibits a high fabrication speed,large area,perfect lens shape control via a three-dimensional optical proximity correction and average surface roughness lower than 6 nm.In particular,the AMLAs can be flexibly designed with customized filling factor and arbitrary off-axis operation for each single micro-lens,and the proposed pattern transfer approach with polydimethylsiloxane(PDMS)suggests a low-cost way for mass manufacturing.An auto-stereoscopic-display flexible thin film with excellent display effect has been prepared by using above technology,which exhibits a new way to provide flexible auto-stereoscopic-display at low cost.In brief,the demonstrated fabrication of AMLAs based on direct laser writing lithography reduce the complexity of AMLA fabrication while significantly increasing their performance,suggesting a new route for high-quality three-dimentional optical manufacturing towards simplified fabrication process,high precision and large scale.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11501113,11601330 and 11701469)the Key Project of Fujian Education Committee(Grant No.JA15045)the Funding Program for Junior Faculties of College and Universities of Shanghai Education Committee(Grant No.ZZslg16020)
文摘Let {(ξni, ηni), 1 ≤ i ≤ n, n ≥ 1} be a triangular array of independent bivariate elliptical random vectors with the same distribution function as (S1,ρnS1 + √1- ρ2nS2), ρn ∈(0, 1), where (S1,S2) is a bivariate spherical random vector. For the distribution function of radius√S12 + S22 belonging to the max-domain of attraction of the Weibull distribution, the limiting distribution of maximum of this triangular array is known as the convergence rate of p~ to 1 is given. In this paper, under the refinement of the rate of convergence of p~ to 1 and the second-order regular variation of the distributional tail of radius, precise second-order distributional expansions of the normalized maxima of bivariate elliptical triangular arrays are established.
基金This work was financially supported by the National Key R&D Program of China(No.2022YFB2803900)the National Natural Science Foundation of China(Nos.U2004165,U22A20138,and 11974016)+1 种基金the Natural Science Foundation of Henan Province,China(No.202300410376)Key Research and Development Program(social development)of Jiangsu Province(No.BE2021667).
文摘As one of the most promising materials for two-dimensional transition metal chalcogenides(2D TMDs),molybdenum diselenide(MoSe_(2))has great potential in photodetectors due to its excellent properties like tunable bandgap,high carrier mobility,and excellent air stability.Although 2D MoSe_(2)-based photodetectors have been reported to exhibit admired performance,the large-area 2D MoSe_(2)layers are difficult to be achieved via conventional synthesis methods,which severely impedes its future applications.Here,we present the controllable growth of large-area 2D MoSe_(2)layers over 3.5-inch with excellent homogeneity by a simple post-selenization route.Further,a high-quality n-MoSe_(2)/p-Si van der Waals(vdW)heterojunction device is in-situ fabricated by directly growing 2D n-MoSe_(2)layers on the patterned p-Si substrate,which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W^(−1),a high specific detectivity of 10^(13) Jones,and a fast response time to follow nanosecond pulsed optical signal.In addition,thanks to the inch-level 2D MoSe_(2)layers,a 4×4 integrated heterojunction device array is achieved,which has demonstrated good uniformity and satisfying imaging capability.The large-area 2D MoSe_(2)layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.