This study demonstrates a simple 2-bit phased array operating at 27 GHz that supports one-dimensional beam scanning with left-handed circular polarization(LHCP).The antenna is constructed using a compact four-layer pr...This study demonstrates a simple 2-bit phased array operating at 27 GHz that supports one-dimensional beam scanning with left-handed circular polarization(LHCP).The antenna is constructed using a compact four-layer printed circuit board(PCB)structure,consisting of a 90°phase shifter layer with microstrip structures,a ground(GND)layer,a direct current(DC)control layer,and a circularly polarized annular radiation patch layer with 1-bit phase shifting.Based on the proposed unit structure,a 1×8 array with half-wavelength inter-element spacing was designed and validated.Experimental results show that the array achieves a peak gain of 10.23 dBi and is capable of beam scanning within±50°.展开更多
A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual couplin...A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual coupling effect between elements caused by a tightly arranged feed array,which changes the performance of a PAF,this paper presents a 7×7 rectangular feed array model for a 25 m reflector telescope.By adjusting the element spacings,the performance of a PAF with different spacings is comprehensively analyzed with respect to the mutual coupling effect via performance statistics and comparison.This research aims to provide a reference for the preliminary design of a related PAF.展开更多
The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyze...The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals.展开更多
This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Are...This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.展开更多
Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in ...Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.展开更多
The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the rad...The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.展开更多
Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated s...Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.展开更多
A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The re...A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The real-time dwell scheduling algorithm based on the scheduling gain is presented with the help of two heuristic rules. The simulation results demonstrate that compared with the conventional adaptive scheduling method, the algorithm proposed not only increases the scheduling gain and the time utility but also decreases the task drop rate.展开更多
This paper addresses the spectral coexistence between LEO constellation and GEO belt for global distributed earth stations. A specific method is introduced to mitigate the in-line interference by tilting the direction...This paper addresses the spectral coexistence between LEO constellation and GEO belt for global distributed earth stations. A specific method is introduced to mitigate the in-line interference by tilting the direction normal of phased array antennas of LEO satellites, and the optimal direction is found by solving a non-linear programming problem. The simulation results prove that the proposed approach leads to greater link availability while guaranteeing the desired received signal level especially for low-latitude earth stations.展开更多
Transducers that are widely applied in cement bond evaluation tools, such as cement bond logs and variable density logs, cannot radiate acoustic energy directionally because of the characteristics of monopole sources....Transducers that are widely applied in cement bond evaluation tools, such as cement bond logs and variable density logs, cannot radiate acoustic energy directionally because of the characteristics of monopole sources. A phased arc array transmitter, which is a novel transducer that differs from monopole and dipole transducers, is presented in this study. To simulate the acoustic field generated by a phased arc array in a fluid-filled cased borehole with different channelings, a 3D finite-difference time-domain method is adopted. The acoustic field generated by a traditional monopole source is also simulated and compared with the field generated by the phased arc array transmitter. Numerical simulation results show that the phased arc array radiates energy directionally in a narrow angular range in the borehole, thereby compressing the acoustic energy into a narrow range in the casing pipe, the cement, and the formation. We present the analyses of first-arrival waveforms and the amplitudes of casing waves at different azimuthal angles for the two different sources. The results indicate that employing a directional source facilitates azimuthal identification and analysis of possible channeling behind the casing pipe.展开更多
The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and ...The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.展开更多
A research about the ultrasonic phased array imaging principle from A-scan signal to B-scan image for non-destructive testing (NDT) was conducted in this paper, the ultrasonic phased array inspection imaging system ...A research about the ultrasonic phased array imaging principle from A-scan signal to B-scan image for non-destructive testing (NDT) was conducted in this paper, the ultrasonic phased array inspection imaging system used in industrial field was developed and the experiment was performed on the steel testing block by the system with 64 elements, 5 MHz phased array transducer. Experimental results show that the flaws could be accurately detected and the flaws size could be estimated from the B-scan images, and the B-scan images could clearly show the location of the flaws, but the quality of B-scan images needs to be enhanced by digital signal processing and controlling dynamic focusing for improving the image resolution.展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
Ultrasonic inspection of austenitic steel weld is a great challenge due to skewed and distorted beam in such a highly anisotropic and inhomogeneous material. To improve the ultrasonic measurement in this situation, it...Ultrasonic inspection of austenitic steel weld is a great challenge due to skewed and distorted beam in such a highly anisotropic and inhomogeneous material. To improve the ultrasonic measurement in this situation, it is essential to have an in-depth understanding of ultrasound characteristics in austenitic steel weld. To meet such a need, in the present study we propose a method which combines the weld model, Dijkstra’s path-finding algorithm and Gaussian beam equivalent point source model to calculate the acoustic fields from ultrasonic phased array in such a weld. With this method, the acoustic field in a steel-austenitic weld-steel three-layered structure for a linear phase array transducer is calculated and the propagation characteristics of ultrasound in weld are studied. The research results show that the method proposed here is capable of calculating the acoustic field in austenitic weld. Additionally, beam steering and focusing can be still realized in the austenitic steel weld and the beam distortion is more severe in the middle of weld than at other positions.展开更多
A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positio...A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.展开更多
The acoustic tools widely used in borehole well logging and being developed in borehole acoustic reflection imaging do not have the function of azimuthal measurement due to a symmetric source, so they can not be used ...The acoustic tools widely used in borehole well logging and being developed in borehole acoustic reflection imaging do not have the function of azimuthal measurement due to a symmetric source, so they can not be used to evaluate the azimuthal character of borehole formation. In this paper, a 3D finite difference method was used to simulate the acoustic fields in a fluid-filled borehole generated by a traditional monopole source and a phased arc array. Acoustic waveforms were presented for both cases. The analysis of the simulated waveforms showed that different from the monopole source, the acoustic energy generated by the phased arc array transmitter mainly radiated to the borehole in a narrow azimuthal range, which was the key technique to implement azimuthal acoustic well logging. Similar to the monopole source, the waveforms generated by the phased arc array in the fluid-filled borehole also contain compressional (P) waves and shear (S) waves refracted along the borehole, which is the theoretical foundation of phased arc array acoustic well logging.展开更多
The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field dis...The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.展开更多
One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and sign...One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FP- GA) which could drive the optical transceiver. The transmission agreement was designed based on the data stream. In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar, a method named synchronous clock was designed. The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s. The phased array radar system has detected the airplane target, thus validated the feasibility of the design method.展开更多
Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources c...Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.62171103in part by the National Natural Science Foundation of China“111”Project under Grant No.BP0719011.
文摘This study demonstrates a simple 2-bit phased array operating at 27 GHz that supports one-dimensional beam scanning with left-handed circular polarization(LHCP).The antenna is constructed using a compact four-layer printed circuit board(PCB)structure,consisting of a 90°phase shifter layer with microstrip structures,a ground(GND)layer,a direct current(DC)control layer,and a circularly polarized annular radiation patch layer with 1-bit phase shifting.Based on the proposed unit structure,a 1×8 array with half-wavelength inter-element spacing was designed and validated.Experimental results show that the array achieves a peak gain of 10.23 dBi and is capable of beam scanning within±50°.
基金This work was supported by the Chinese Academy of Sciences"Light of West China"Program(2020-XBQNXZ-018)the National Natural Science Foundation of China(11973078)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A358)。
文摘A phased array feed(PAF)is a type of receiving array that places phased array antennas on the focal plane of a radio telescope to expand its field of view and improve observation efficiency.Owing to the mutual coupling effect between elements caused by a tightly arranged feed array,which changes the performance of a PAF,this paper presents a 7×7 rectangular feed array model for a 25 m reflector telescope.By adjusting the element spacings,the performance of a PAF with different spacings is comprehensively analyzed with respect to the mutual coupling effect via performance statistics and comparison.This research aims to provide a reference for the preliminary design of a related PAF.
基金National Key R&D Program of China (2022YFC3004101)Science and Technology Projects of Guangzhou (2023B04J0704,2023B04J0232)+1 种基金Natural Science Foundation of Guangdong Province (2022A15150118141)Key Scientific and Technological Research Project of Guangzhou Meteorological Society (Z202201)。
文摘The X-band phased array radar offers faster scanning speed and higher spatial resolution compared to the S-band radar,making it capable of enhancing tornado monitoring and early warning capabilities.This study analyzed the characteristics and nowcasting signals of a tornado case that occurred on June 16,2022 in the Guangzhou region.Our findings indicate that the violent contraction of rotation radius and the dramatic increase in rotation speed were important signal characteristics associated with tornado formation.The X-band phased array radar,with its high temporal and spatial resolution,provided an opportunity to capture early warning signals from polarimetric characteristics.The X-band phased array radar demonstrated noteworthy ability to identify apparent tornado vortex signature(TVS)features in a 10-minute lead time,surpassing the capabilities of the CINRAD/SA radar.Additionally,due to its higher scanning frequency,the Xband phased-array radar was capable of consistently identifying TVS with shorter intervals,enabling a more precise tracking of the tornado's path.The application of professional radars,in this case,provides valuable insights for the monitoring of evolutions of severe local storms and even tornadoes and the issuance of early warning signals.
文摘This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.
基金National Natural Science Foundation of China(No.61201412)Ntural Science Foundation of Shanxi Province(No.2012021011-5)
文摘Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.
文摘The impedance of a solid state active phased array antenna varing with frequency and beam scanning scanning angle be matched with the solid state active matching network (SSAMN). In order to adjust and measure the radar conveniently and Securely, it is necessary for the impedance of the simulator of the phased array antennas to be optimized.Having selected the PIN dilde controlling circuits and the circuit parameters optimized,the simulator circuit is determined through numerical computation The experiment is given in support of the simulation.
基金National Natural Science Foundation of China(No.61201412)Shanxi Province Fundation for Science and Technology Research(No.2012021011-5)Program for Top Young Academic Leaders of Higher Learning Institution in Shanxi Province
文摘Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.
文摘A real-time dwell scheduling model, which takes the time and energy constraints into account is founded from the viewpoint of scheduling gain. Scheduling design is turned into a nonlinear programming procedure. The real-time dwell scheduling algorithm based on the scheduling gain is presented with the help of two heuristic rules. The simulation results demonstrate that compared with the conventional adaptive scheduling method, the algorithm proposed not only increases the scheduling gain and the time utility but also decreases the task drop rate.
基金supported by the National Natural Science Foundation of China (grant no. 91738101 and 91438206)
文摘This paper addresses the spectral coexistence between LEO constellation and GEO belt for global distributed earth stations. A specific method is introduced to mitigate the in-line interference by tilting the direction normal of phased array antennas of LEO satellites, and the optimal direction is found by solving a non-linear programming problem. The simulation results prove that the proposed approach leads to greater link availability while guaranteeing the desired received signal level especially for low-latitude earth stations.
基金supported by the National Natural ScienceFoundation of China (Grant Nos. 11204380, 11374371, 11134011 and 61102102)National Science and Technology Major Project (Grant No. 2011ZX05020-009)PetroChina Innovation Foundation (2013D-5006-0304)
文摘Transducers that are widely applied in cement bond evaluation tools, such as cement bond logs and variable density logs, cannot radiate acoustic energy directionally because of the characteristics of monopole sources. A phased arc array transmitter, which is a novel transducer that differs from monopole and dipole transducers, is presented in this study. To simulate the acoustic field generated by a phased arc array in a fluid-filled cased borehole with different channelings, a 3D finite-difference time-domain method is adopted. The acoustic field generated by a traditional monopole source is also simulated and compared with the field generated by the phased arc array transmitter. Numerical simulation results show that the phased arc array radiates energy directionally in a narrow angular range in the borehole, thereby compressing the acoustic energy into a narrow range in the casing pipe, the cement, and the formation. We present the analyses of first-arrival waveforms and the amplitudes of casing waves at different azimuthal angles for the two different sources. The results indicate that employing a directional source facilitates azimuthal identification and analysis of possible channeling behind the casing pipe.
基金supported partly by the National Natural Science Foundation of China(50805111)the Natural Science Basic Research Plan in Shaanxi Province of China(SJ08E_203.)
文摘The influence of the distorted plane of the active phased array antenna on the electromagnetic performance is of great significance to the research on and development of the high-performance antennas. On the bent and bowl-shape distortion, the model is established of the relationship between the electromagnetic performance and the position error of the radiated elements. The method is presented of analyzing the far-field pattern of the distorted rectangular active phased array antenna. The analysis results of a planar phased array antenna with different distortions grades prove the validity of the model. Therefore, by the method, the antenna designers may set the reasonable requirement on the structural tolerance in manufacturing antenna.
基金Funded by"863"of The High-Tech Research and Development Program of China (No.2003AA602230).
文摘A research about the ultrasonic phased array imaging principle from A-scan signal to B-scan image for non-destructive testing (NDT) was conducted in this paper, the ultrasonic phased array inspection imaging system used in industrial field was developed and the experiment was performed on the steel testing block by the system with 64 elements, 5 MHz phased array transducer. Experimental results show that the flaws could be accurately detected and the flaws size could be estimated from the B-scan images, and the B-scan images could clearly show the location of the flaws, but the quality of B-scan images needs to be enhanced by digital signal processing and controlling dynamic focusing for improving the image resolution.
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474308,11574343,and 11774377)
文摘Ultrasonic inspection of austenitic steel weld is a great challenge due to skewed and distorted beam in such a highly anisotropic and inhomogeneous material. To improve the ultrasonic measurement in this situation, it is essential to have an in-depth understanding of ultrasound characteristics in austenitic steel weld. To meet such a need, in the present study we propose a method which combines the weld model, Dijkstra’s path-finding algorithm and Gaussian beam equivalent point source model to calculate the acoustic fields from ultrasonic phased array in such a weld. With this method, the acoustic field in a steel-austenitic weld-steel three-layered structure for a linear phase array transducer is calculated and the propagation characteristics of ultrasound in weld are studied. The research results show that the method proposed here is capable of calculating the acoustic field in austenitic weld. Additionally, beam steering and focusing can be still realized in the austenitic steel weld and the beam distortion is more severe in the middle of weld than at other positions.
基金the High Technology Research and Development Programme of China (2003AA134030)
文摘A search strategy based on the maximal information gain principle is presented for the cued search of phased array radars. First, the method for the determination of the cued search region, arrangement of beam positions, and the calculation of the prior probability distribution of each beam position is discussed. And then, two search algorithms based on information gain are proposed using Shannon entropy and Kullback-Leibler entropy, respectively. With the proposed strategy, the information gain of each beam position is predicted before the radar detection, and the observation is made in the beam position with the maximal information gain. Compared with the conventional method of sequential search and confirm search, simulation results show that the proposed search strategy can distinctly improve the search performance and save radar time resources with the same given detection probability.
基金supported by the National Natural ScienceFoundation of China(Grant Nos.10534040,40574049 and 40874097)the Research Fund for the Doctoral Programof Higher Education(Grant No.20070425028)the Foundation of State Key Laboratory of Petroleum Resourceand Prospecting,China University of Petroleum(Grant No.PRPDX2008-08).
文摘The acoustic tools widely used in borehole well logging and being developed in borehole acoustic reflection imaging do not have the function of azimuthal measurement due to a symmetric source, so they can not be used to evaluate the azimuthal character of borehole formation. In this paper, a 3D finite difference method was used to simulate the acoustic fields in a fluid-filled borehole generated by a traditional monopole source and a phased arc array. Acoustic waveforms were presented for both cases. The analysis of the simulated waveforms showed that different from the monopole source, the acoustic energy generated by the phased arc array transmitter mainly radiated to the borehole in a narrow azimuthal range, which was the key technique to implement azimuthal acoustic well logging. Similar to the monopole source, the waveforms generated by the phased arc array in the fluid-filled borehole also contain compressional (P) waves and shear (S) waves refracted along the borehole, which is the theoretical foundation of phased arc array acoustic well logging.
基金Supported by National Key R&D Program of China(Grant No.2016YFF0203000)State Key Program of National Natural Science Foundation of China(Grant No.11834008)+5 种基金National Natural Science Foundation of China(Grant Nos.11774167,61571222)Fundamental research funds for the Central Universities(Grant No.020414380001)State Key Laboratory of Acoustics,Chinese Academy of Science(Grant No.SKLA201809)Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)AQSIQ technology R&D program(Grant No.2017QK125)Innovative Talents Program of Far East NDT New Technology&Application Forum
文摘The scattered fields of plane waves in a solid from a cylinder or sphere are critical in determining its acoustic characteristics as well as in engineering applications. This paper investigates the scattered field distributions of different incident waves created by elastic cylinders embedded in an elastic isotropic medium. Scattered waves, including longitudinal and transverse waves both inside and outside the cylinder, are described with specific modalities under an incident plane wave. A model with a scatterer embedded in a structural steel matrix and filled with aluminum is developed for comparison with the theoretical solution. The frequency of the plane wave ranged from 235 kHz to 2348 kHz, which corresponds to scaling factors from 0.5 to 5. Scattered field distributions in matrix materials blocked by an elastic cylindrical solid have been obtained by simulation or calculated using existing parameters. The simulation results are in good agreement with the theoretical solution, which supports the correctness of the simulation analysis. Furthermore, ultrasonic phased arrays are used to study scattered fields by changing the characteristics of the incident wave. On this foundation, a partial preliminary study of the scattered field distribution of double cylinders in a solid has been carried out, and the scattered field distribution at a given distance has been found to exhibit particular behaviors at different moments. Further studies on directivities and scattered fields are expected to improve the quantification of scattered images in isotropic solid materials by the phased array technique.
基金the Ministerial Level Advanced Research Foundation(30507060)
文摘One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FP- GA) which could drive the optical transceiver. The transmission agreement was designed based on the data stream. In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar, a method named synchronous clock was designed. The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s. The phased array radar system has detected the airplane target, thus validated the feasibility of the design method.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
基金the Aeronautical Science Foundation of China(2017ZC53021)the Open Project Fund of CETC Key Laboratory of Data Link Technology(CLDL-20182101).
文摘Real-time resource allocation is crucial for phased array radar to undertake multi-task with limited resources,such as the situation of multi-target tracking,in which targets need to be prioritized so that resources can be allocated accordingly and effectively.A three-way decision-based model is proposed for adaptive scheduling of phased radar dwell time.Using the model,the threat posed by a target is measured by an evaluation function,and therefore,a target is assigned to one of the three possible decision regions,i.e.,positive region,negative region,and boundary region.A different region has a various priority in terms of resource demand,and as such,a different radar resource allocation decision is applied to each region to satisfy different tracking accuracies of multi-target.In addition,the dwell time scheduling model can be further optimized by implementing a strategy for determining a proper threshold of three-way decision making to optimize the thresholds adaptively in real-time.The advantages and the performance of the proposed model have been verified by experimental simulations with comparison to the traditional twoway decision model and the three-way decision model without threshold optimization.The experiential results demonstrate that the performance of the proposed model has a certain advantage in detecting high threat targets.