The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph...The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.展开更多
The superplasticity behavior of Fe-28Al, Fe-28Al-2Ti, Fe-28Al-4Ti (all composition reported in this paper are in atomic percent) alloys has been investigated by tensile testing.optical microscopy and transmission elec...The superplasticity behavior of Fe-28Al, Fe-28Al-2Ti, Fe-28Al-4Ti (all composition reported in this paper are in atomic percent) alloys has been investigated by tensile testing.optical microscopy and transmission electron mocroscopy.Tensile test were performed at 700 to 900℃ under a strain rate range of about 10-5/s to 10-2/s. Maximum strain rate sensitivity index m was found to be 0.5 and the largest elongation reached 620%. The flow activation energy was measured to be 263kJ/mol for Fe-28Al and 191kJ/ mol for Fe-28Al-2Ti, which are much lower than the creep activation energy generally observed in Fe3Al alloys. After deformation grain size became much finer from about 100 μm to 20-30μm.As combined with TEM observations, we suggested that a continuous recrystallization process took place and superplasticity may arise from this process.展开更多
The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by e...The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation.展开更多
Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the m...Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.展开更多
The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and arti...The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.展开更多
Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size o...Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions.展开更多
The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size sup...The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size superplastic alloys. However, superplastic behavior was found in large grained iron aluminides without the usual prerequisites for the superplasticity of a fine grain size and grain boundary sliding. The metallographic examinations have shown that average grain size of large grained iron aluminides decreased during superplastic deformation. Transmission electron microscopy (TEM) observations have shown that there were a great number of subgrain boundaries which formed a network and among which the proportion of low and high angle boundaries increased with the increase of strain. The observed superplastic phenomenon is explained by continuous recovery and recrystallization. During superplastic deformation, an unstable subgrain network forms and these subboundaries absorb gliding dislocations and transform into low and high angle grain boundaries. A dislocation gliding and climb process accommodated by subboundary sliding, migration and rotation, allows the superplastic flow to proceed.展开更多
The superplasticity and diffusion bonding of IN718 superalloy were studied in this article. The strain rate sensitivity index m was obtained at different temperatures and various initial strain rates using the tensile...The superplasticity and diffusion bonding of IN718 superalloy were studied in this article. The strain rate sensitivity index m was obtained at different temperatures and various initial strain rates using the tensile speed mutation method; m reached its maximum value 0.53 at an initial strain rate of 1×10^-4s^-1 at 1253K. The diffusion bonding parameters, including the bonding temperature T, pressure p, and time t, affected the mechanism of joints. When the bonded specimen with 25μm thick nickel foil interlayer was tensile at room temperature, the shear fracture of the joints with nickel foil interlayer took place at the IN718 part. Microstructure study was carried out with the bonded samples. The microstructure shows an excellent bonding at the interfaces. The optimum parameters for the diffusion bonding are: T = 1273-1323K, p = 20-30MPa, t = 45-60min.展开更多
The maximum elongation-to-failure of 960% has been achieved in the Mg-8wt%Li alloy. It is shown by measurement of true stress-strain curve and microstructure observation that dynamic recrystallization takes place duri...The maximum elongation-to-failure of 960% has been achieved in the Mg-8wt%Li alloy. It is shown by measurement of true stress-strain curve and microstructure observation that dynamic recrystallization takes place during superplastic deformation, which turns the banded grains into equiaxed grains. It is postulated by theoretical analysis that during superplastic deformation,continuous introduction of lattice dislocations into the phase interfaces contributes to the superplasticity in this alloy.During superplastic deformation,grain growth and cavity nucleation at α phase grain boundaries have also been observed.展开更多
Gleeble1500 thermo-mechanical simulation machine is considered to be the first grade equipment in materials' research. However, it is seldom used in superplastic research. Perhaps this is because its specimen'...Gleeble1500 thermo-mechanical simulation machine is considered to be the first grade equipment in materials' research. However, it is seldom used in superplastic research. Perhaps this is because its specimen's heating method is not suitable to get large elongation. Elongation is an important parameter to evaluate superplasticity, but some other parameters such as the relationship between stress and strain rate are more important than elongation-it is an essential property to superplasticity. The stress-strain rate relationship can be very easily and very accu- rately got with Gleeble machine than with some other simlar equipment, and the relationship between microstructure and superplastic deformation is more easily examined with Gleeble. Present authors have got some new achievement in anisotropy, heterogeneity of superplastic deformation, and first put forward the regulation of dynamic equilibrium in microstructural evolution during superplastic deformation. All of these have been concluded from the experimental results mainly through Gleeble as well as the microstructural examination.The research work has got the support of National Natural Science Foundation and some international cooperation. Some theoretic and experimental results have been used in the practice of superplastic forming. Obvious effect of reducing cost and improving quality of formed parts has been achieved.展开更多
A β SiC whisker reinforced pure aluminum composites expected to exhibit high strain rate superplasticity has been successfully fabricated by a new processing route consisting of pressure infiltration, extrusion with ...A β SiC whisker reinforced pure aluminum composites expected to exhibit high strain rate superplasticity has been successfully fabricated by a new processing route consisting of pressure infiltration, extrusion with a low extrusion ratio and rolling. The composites exhibite a total elongation of 220%~380% in the initial strain rates within 1.0×10 -2 ~1.0×10 -1 s -1 and at 893~903 K. According to differential thermal analysis(DTA) and microstructure observation, it is concluded that an appropriately small amount of liquid phase is necessary to cause a good high strain rate superplasticity in aluminum matrix composites in addition to fine and uniform microstructure.展开更多
The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^...The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.展开更多
Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experim...Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experimentally shown that a drop in the lower superplastic flow temperature with decreasing mean grain size provides an opportunity to decrease the temperature at whicmethods for titanium alloys.展开更多
The superplastic deformation behavior of SiCw/ZK60 composite was investigated at temperatures ranging from 573K to 723K and at initial strain rates ranging from 8.3x10-4s-1 to 8.3x10-2s-1. A maximum elongation of 200%...The superplastic deformation behavior of SiCw/ZK60 composite was investigated at temperatures ranging from 573K to 723K and at initial strain rates ranging from 8.3x10-4s-1 to 8.3x10-2s-1. A maximum elongation of 200% with a m-value of 0.35 was obtained at 613K and a initial strain rate of 1.67x 10-2s-1. The apparent activation energy (98kJ/mol) approximates that for grain boundary diffusion (92kJ/mol) in magnesium. It is proposed that the dominant mechanism of superplastic deformation in the present composite is grain boundary sliding accommodated by diffusional transport, besides, interfacial sliding plays an important role in the superplastic deformation.展开更多
The effect of extrusion on grain refinement has been studied in the AZ91 cast ingots. It is found that grain sizesmaller than 10μm can be obtained by the extrusion processing. Vickers hardness measurements were also ...The effect of extrusion on grain refinement has been studied in the AZ91 cast ingots. It is found that grain sizesmaller than 10μm can be obtained by the extrusion processing. Vickers hardness measurements were also carriedout to evaluate the effect of these processes on the room temperature mechanical properties. The experimentalresults of high temperature tensile tests revealed that the stress was inversely proportional to the square of the grainsize and that the activation energy for superplastic flow was higher than that for grain boundary diffusion.展开更多
The superplastic characteristics of the β-SiC whisker reinforced 2024 aluminum composite, fabricated by pressure infiltration and hot-rolling after extrusion, were investigated. The composite has a fine grain size of...The superplastic characteristics of the β-SiC whisker reinforced 2024 aluminum composite, fabricated by pressure infiltration and hot-rolling after extrusion, were investigated. The composite has a fine grain size of about 1μm, and exhibits a maximum tensile elongation of 370% in the initial strain rate of 3.3×10-3 s-1 at 788K.The superplastic deformation mechanism of the composite is thought to be grain boundary (interface) sliding accommodated by grain boundary diffusion of aluminum atom and an appropriate amount of liquid phase.展开更多
In this paper,the superplastic characteristics of the beta-SiC whisker reinforced 2024aluminum composite, fabricated by squeeze casting and hot-rolling after extrusion were investigated. The compsite had a fine grain ...In this paper,the superplastic characteristics of the beta-SiC whisker reinforced 2024aluminum composite, fabricated by squeeze casting and hot-rolling after extrusion were investigated. The compsite had a fine grain size of about 2μm, and exhibited a strain rate sensitivity of about 0.35 and a maximum elongation of 350% at an initial strain rate of 1.1×10-1s-1 at 803K. In addition, the superplastic deformation mechanisme of the composite were also examined.展开更多
The superplasticity in SiCp/Al alloy and SiCp/Al Li Composites is introduced The composites are prepared by powder metallurgy and cast methods The superplastic parameters are measured Superplastic treatment proc...The superplasticity in SiCp/Al alloy and SiCp/Al Li Composites is introduced The composites are prepared by powder metallurgy and cast methods The superplastic parameters are measured Superplastic treatment processing,secondary plastic working and the study of mirostructure are conducted.展开更多
The superplasticity of AINp/6061Al composite, fabricated by powder metallurgy method and hot-rolled after extrusion, was investigated. The AINp/6061Al composite exhibits an m-value of 0.49 and a maximum elongation of...The superplasticity of AINp/6061Al composite, fabricated by powder metallurgy method and hot-rolled after extrusion, was investigated. The AINp/6061Al composite exhibits an m-value of 0.49 and a maximum elongation of 438% in the strain rates ranging hem 10-2-100s-1 and at temperatures from 823K to 893K. Diffirential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that liquid phase existed where maximum elongation was obtained.展开更多
The behavior of dynamic recrystallization in the superplastic deformation of 8090 and 2091 aluminum-lithium alloys have been investigated.TEM observations indicated that dynamic recrystallization occurs at thetriple j...The behavior of dynamic recrystallization in the superplastic deformation of 8090 and 2091 aluminum-lithium alloys have been investigated.TEM observations indicated that dynamic recrystallization occurs at thetriple junction of grain boundaries.The measurement of grain boundary angle showed that recrystallization indynamic equilibrium exists in the process of superplastic deformation of 8090 Al-Li alloy.It is also indicatedthat,besides the role of refining grains and the grain boundary sliding,dynamic recrystallization playsconcurrently a role of stablizing microstructure.Thus dynamic rccrystallization can be used to induce metalssuperplasticity,which leads to a simplification of pretreatment for superplastic deformation.展开更多
文摘The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.
文摘The superplasticity behavior of Fe-28Al, Fe-28Al-2Ti, Fe-28Al-4Ti (all composition reported in this paper are in atomic percent) alloys has been investigated by tensile testing.optical microscopy and transmission electron mocroscopy.Tensile test were performed at 700 to 900℃ under a strain rate range of about 10-5/s to 10-2/s. Maximum strain rate sensitivity index m was found to be 0.5 and the largest elongation reached 620%. The flow activation energy was measured to be 263kJ/mol for Fe-28Al and 191kJ/ mol for Fe-28Al-2Ti, which are much lower than the creep activation energy generally observed in Fe3Al alloys. After deformation grain size became much finer from about 100 μm to 20-30μm.As combined with TEM observations, we suggested that a continuous recrystallization process took place and superplasticity may arise from this process.
基金supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJKY19_0460)the National Natural Science Foundation of China (Grant No.51979099 & 51774109)+2 种基金Natural Science Foundation of Jiangsu Province of China (Grant No.BK20191303)The Key Research and Development Project of Jiangsu Province of China (Grant No.BE2017148)Postgraduate Education Reform Project of Jiangsu Province (JGLX19_027)。
文摘The effect of adding a small amount of Ag on the microstructure evolution and superplastic properties of Mg-Y-Er-Zn(WEZ612) alloys was systematically studied.The basal texture of the refined WEZ612 alloy produced by equal channel angular pressing was altered to a non-basal structure upon the addition of Ag.Ag addition also refined the grain size and promoted the formation of a large number of nano-14H-long period stacking ordered phases.Using high-resolution transmission electron microscopy,many nano-precipitated phases were detected on the basal plane of the Mg-Y-Er-Zn-1Ag(WEZ612-1Ag) alloy,The nano-precipitated phases on the basal plane improved the thermal stability of the alloy,lowered the deformation activation energy(Q),and improved the stress sensitivity index(m).At 523 K with a strain rate of 10^(-2) s^(-1),the Q value of WEZ612 was higher than that of WEZ612-1Ag(299.14 and 128.5 kJ mol^(-1),respectively).In contrast,the m value of the WEZ612 alloy(0.16) was lower than that of the WEZ612-1Ag alloy(0.46).At 623 K with a tensile rate of 10^(-2) s^(-1),the WEZ612 and WEZ612-1Ag alloys were elongated by 182% and 495%,respectively,with the latter exhibiting high-strain-rate and low-temperature superplasticity.The improved superplasticity of the WEZ612-1Ag alloy is attributed to the nano-precipitated phases,which effectively limit the cavity extension during superplastic deformation.
文摘Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.
基金obtained from Comunidad de Madrid through the Universidad Politécnica de Madrid in the line of Action for Encouraging Research from Young Doctors(project CdM ref:APOYO-JOVENES779NQU-57-LSWH0F,UPM ref M190020074AOC,CAREDEL)MINECO(Spain)Project MAT2015-68919-C3-1-R(MINECO/FEDER)+4 种基金project PID2020-118626RB-I00(RAPIDAL)awarded by MCIN/AEI/10.13039/501100011033FSP assistanceProject CAREDELProject RAPIDAL for research contractsMCIN/AEI for a FPI contract number PRE2021-096977。
文摘The aim of this work is to predict,for the first time,the high temperature flow stress dependency with the grain size and the underlaid deformation mechanism using two machine learning models,random forest(RF)and artificial neural network(ANN).With that purpose,a ZK30 magnesium alloy was friction stir processed(FSP)using three different severe conditions to obtain fine grain microstructures(with average grain sizes between 2 and 3μm)prone to extensive superplastic response.The three friction stir processed samples clearly deformed by grain boundary sliding(GBS)deformation mechanism at high temperatures.The maximum elongations to failure,well over 400% at high strain rate of 10^(-2)s^(-1),were reached at 400℃ in the material with coarsest grain size of 2.8μm,and at 300℃ for the finest grain size of 2μm.Nevertheless,the superplastic response decreased at 350℃ and 400℃ due to thermal instabilities and grain coarsening,which makes it difficult to assess the operative deformation mechanism at such temperatures.This work highlights that the machine learning models considered,especially the ANN model with higher accuracy in predicting flow stress values,allow determining adequately the superplastic creep behavior including other possible grain size scenarios.
基金Project (2009Z2-D811) supported by Guangzhou Science and Technology Development Program, ChinaProject (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities, China
文摘Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions.
文摘The superplastic behavior has been found in Fe 3Al and FeAl alloys with grain sizes of 100~600 μm. The large grained Fe 3Al and FeAl alloys exhibit all deformation characteristics of conventional fine grain size superplastic alloys. However, superplastic behavior was found in large grained iron aluminides without the usual prerequisites for the superplasticity of a fine grain size and grain boundary sliding. The metallographic examinations have shown that average grain size of large grained iron aluminides decreased during superplastic deformation. Transmission electron microscopy (TEM) observations have shown that there were a great number of subgrain boundaries which formed a network and among which the proportion of low and high angle boundaries increased with the increase of strain. The observed superplastic phenomenon is explained by continuous recovery and recrystallization. During superplastic deformation, an unstable subgrain network forms and these subboundaries absorb gliding dislocations and transform into low and high angle grain boundaries. A dislocation gliding and climb process accommodated by subboundary sliding, migration and rotation, allows the superplastic flow to proceed.
文摘The superplasticity and diffusion bonding of IN718 superalloy were studied in this article. The strain rate sensitivity index m was obtained at different temperatures and various initial strain rates using the tensile speed mutation method; m reached its maximum value 0.53 at an initial strain rate of 1×10^-4s^-1 at 1253K. The diffusion bonding parameters, including the bonding temperature T, pressure p, and time t, affected the mechanism of joints. When the bonded specimen with 25μm thick nickel foil interlayer was tensile at room temperature, the shear fracture of the joints with nickel foil interlayer took place at the IN718 part. Microstructure study was carried out with the bonded samples. The microstructure shows an excellent bonding at the interfaces. The optimum parameters for the diffusion bonding are: T = 1273-1323K, p = 20-30MPa, t = 45-60min.
文摘The maximum elongation-to-failure of 960% has been achieved in the Mg-8wt%Li alloy. It is shown by measurement of true stress-strain curve and microstructure observation that dynamic recrystallization takes place during superplastic deformation, which turns the banded grains into equiaxed grains. It is postulated by theoretical analysis that during superplastic deformation,continuous introduction of lattice dislocations into the phase interfaces contributes to the superplasticity in this alloy.During superplastic deformation,grain growth and cavity nucleation at α phase grain boundaries have also been observed.
文摘Gleeble1500 thermo-mechanical simulation machine is considered to be the first grade equipment in materials' research. However, it is seldom used in superplastic research. Perhaps this is because its specimen's heating method is not suitable to get large elongation. Elongation is an important parameter to evaluate superplasticity, but some other parameters such as the relationship between stress and strain rate are more important than elongation-it is an essential property to superplasticity. The stress-strain rate relationship can be very easily and very accu- rately got with Gleeble machine than with some other simlar equipment, and the relationship between microstructure and superplastic deformation is more easily examined with Gleeble. Present authors have got some new achievement in anisotropy, heterogeneity of superplastic deformation, and first put forward the regulation of dynamic equilibrium in microstructural evolution during superplastic deformation. All of these have been concluded from the experimental results mainly through Gleeble as well as the microstructural examination.The research work has got the support of National Natural Science Foundation and some international cooperation. Some theoretic and experimental results have been used in the practice of superplastic forming. Obvious effect of reducing cost and improving quality of formed parts has been achieved.
文摘A β SiC whisker reinforced pure aluminum composites expected to exhibit high strain rate superplasticity has been successfully fabricated by a new processing route consisting of pressure infiltration, extrusion with a low extrusion ratio and rolling. The composites exhibite a total elongation of 220%~380% in the initial strain rates within 1.0×10 -2 ~1.0×10 -1 s -1 and at 893~903 K. According to differential thermal analysis(DTA) and microstructure observation, it is concluded that an appropriately small amount of liquid phase is necessary to cause a good high strain rate superplasticity in aluminum matrix composites in addition to fine and uniform microstructure.
基金supported by the National Natural Science Foundation of China(No.50674067).
文摘The high strain rate superplastic deformation properties and characteristics of a rolled AZ91 magnesium alloy at temperatures ranging from 623 to 698 K(0.67Tm-0.76Tm) and high strain rates ranging from 10^-3 to 1 s^-1 were investigated.The rolled AZ91 magnesium alloy possesses excellent superplasticity with the maximum elongation of 455% at 623 K and a strain rate of 10-3 s-1,and its strain rate sensitivity m is high up to 0.64.The dominant deformation mechanism responsible for the high strain rate superplasticity is still grain boundary sliding(GBS),and the dislocation creep mechanism is considered as the main accommodation mechanism.
文摘Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experimentally shown that a drop in the lower superplastic flow temperature with decreasing mean grain size provides an opportunity to decrease the temperature at whicmethods for titanium alloys.
文摘The superplastic deformation behavior of SiCw/ZK60 composite was investigated at temperatures ranging from 573K to 723K and at initial strain rates ranging from 8.3x10-4s-1 to 8.3x10-2s-1. A maximum elongation of 200% with a m-value of 0.35 was obtained at 613K and a initial strain rate of 1.67x 10-2s-1. The apparent activation energy (98kJ/mol) approximates that for grain boundary diffusion (92kJ/mol) in magnesium. It is proposed that the dominant mechanism of superplastic deformation in the present composite is grain boundary sliding accommodated by diffusional transport, besides, interfacial sliding plays an important role in the superplastic deformation.
基金The autlors gratefully acknowledge the financial support from the National Commnittee for High Technology ResearchDevelopment of China under the project No.2002AA331120.
文摘The effect of extrusion on grain refinement has been studied in the AZ91 cast ingots. It is found that grain sizesmaller than 10μm can be obtained by the extrusion processing. Vickers hardness measurements were also carriedout to evaluate the effect of these processes on the room temperature mechanical properties. The experimentalresults of high temperature tensile tests revealed that the stress was inversely proportional to the square of the grainsize and that the activation energy for superplastic flow was higher than that for grain boundary diffusion.
文摘The superplastic characteristics of the β-SiC whisker reinforced 2024 aluminum composite, fabricated by pressure infiltration and hot-rolling after extrusion, were investigated. The composite has a fine grain size of about 1μm, and exhibits a maximum tensile elongation of 370% in the initial strain rate of 3.3×10-3 s-1 at 788K.The superplastic deformation mechanism of the composite is thought to be grain boundary (interface) sliding accommodated by grain boundary diffusion of aluminum atom and an appropriate amount of liquid phase.
文摘In this paper,the superplastic characteristics of the beta-SiC whisker reinforced 2024aluminum composite, fabricated by squeeze casting and hot-rolling after extrusion were investigated. The compsite had a fine grain size of about 2μm, and exhibited a strain rate sensitivity of about 0.35 and a maximum elongation of 350% at an initial strain rate of 1.1×10-1s-1 at 803K. In addition, the superplastic deformation mechanisme of the composite were also examined.
文摘The superplasticity in SiCp/Al alloy and SiCp/Al Li Composites is introduced The composites are prepared by powder metallurgy and cast methods The superplastic parameters are measured Superplastic treatment processing,secondary plastic working and the study of mirostructure are conducted.
基金Acknowledgements - This work was supported by the National Natural Science Foundation of Chin a (Grant No. 59781004) and by open
文摘The superplasticity of AINp/6061Al composite, fabricated by powder metallurgy method and hot-rolled after extrusion, was investigated. The AINp/6061Al composite exhibits an m-value of 0.49 and a maximum elongation of 438% in the strain rates ranging hem 10-2-100s-1 and at temperatures from 823K to 893K. Diffirential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that liquid phase existed where maximum elongation was obtained.
文摘The behavior of dynamic recrystallization in the superplastic deformation of 8090 and 2091 aluminum-lithium alloys have been investigated.TEM observations indicated that dynamic recrystallization occurs at thetriple junction of grain boundaries.The measurement of grain boundary angle showed that recrystallization indynamic equilibrium exists in the process of superplastic deformation of 8090 Al-Li alloy.It is also indicatedthat,besides the role of refining grains and the grain boundary sliding,dynamic recrystallization playsconcurrently a role of stablizing microstructure.Thus dynamic rccrystallization can be used to induce metalssuperplasticity,which leads to a simplification of pretreatment for superplastic deformation.