Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d...Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.展开更多
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es...The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.展开更多
Based on field observations and rheology analysis, we perform one analogue experiment and remold the 3D structural frame of Tongling deposit concentrating area firstly. Then we disassemble and dialyze the 3D structure...Based on field observations and rheology analysis, we perform one analogue experiment and remold the 3D structural frame of Tongling deposit concentrating area firstly. Then we disassemble and dialyze the 3D structures of the model using the methods of "slicing" and "stripping". A series of sliced planes vertical to the fold hinges show similar landscapes of that in the drill hole profiles. Meanwhile, layer stripping analysis indicates that the deformation features of each layer in the model are qualitatively analogical to those obtained from field observations. Through contrasting the 3D structure between the experimental model and the field phenomena, we verify the following 3D deformation features of the caprock in this area: (1) the Tongling area mainly consists of three series of NE S-typed fold groups; (2) in the uniform stress field, the incoherent folds universally develop in different positions, along different axes as well as in different strata; (3) the faults propagate upward which are mostly inter-bedded detachment faults, while the fold amplitudes decrease while going deeper; and (4) the folds and cleavages are highly developed in the Silurian System indicating that the deformation effect of the Indosin-ian-Yanshanian structural layer terminates at this layer, which suggests that the Silurian System is the crucial layer for the inversion between brittle and plastic deformation domains and the underlying strata are subject to the control of another deformation system with distinct properties.展开更多
A model is presented for the simulation of reactive gas-solids flows in large industrial reactors. Circulating fluidized bed (CFB) combustors with several thousands of cubic meters reaction volume are probably the l...A model is presented for the simulation of reactive gas-solids flows in large industrial reactors. Circulating fluidized bed (CFB) combustors with several thousands of cubic meters reaction volume are probably the largest reactors of this type. A semi-empirical modeling approach has been chosen to model the three-dimensional concentration distributions of gas and solids components and temperatures inside the combustion chamber of such boilers. Two industrial CFB boilers are investigated in detail: the 105 MWe Duisburg combustor in Germany and the 235 MWe Turow combustor in Poland. The semi-empirical model approach is described first. Then the model is used to show how the three-dimensional concentration and temperature fields are formed by the interaction of several local phenomena. Good agreement between simulation and measurements has been achieved.展开更多
Following recent insights on structure-cell-function interactions and the critical role of the extracellular matrix(ECM),the latest biofabrication approaches have increasingly focused on designing materials with biomi...Following recent insights on structure-cell-function interactions and the critical role of the extracellular matrix(ECM),the latest biofabrication approaches have increasingly focused on designing materials with biomimetic microarchitecture.Divergence electrospinning is a novel fabrication method for three-dimensional(3D)nanofiber scaffolds.It is introduced to produce 3D nanofiber mats that have numerous applications in regenerative medicine and tissue engineering.One of the most important characteristics of 3D nanofiber mats is the density gradient.This study provides a statistical analysis and response surface modeling framework based on experimental data to evaluate the manner by which the geometric designs of double-bevel collectors influence the fiber density gradient.Specifically,variance of analysis and sensitivity analysis were performed to identify parameters that had significant effects,and a response surface model embedded with seven location indicators was developed to predict the spatial distribution of fiber density for different collector designs.It was concluded that the collector height,bevel angle,and their interactions were significant factors influencing the density gradient.This study revealed the sensitivity of system configuration and provided an optimization tool for process controllability of microstructure gradients.展开更多
Most natural rivers are curved channels, where the turbulent flows have a complex helical pattern, as has been extensively studied both numerically and experimentally. The helical flow structure in curved channels ha...Most natural rivers are curved channels, where the turbulent flows have a complex helical pattern, as has been extensively studied both numerically and experimentally. The helical flow structure in curved channels has an important bearing on sediment transport, riverbed evolution, and pollutant transport study. In this article, different turbulence closure schemes i.e., the mixing-length model and the k-ε model with different pressure solution techniques i. e., hydrostatic assumptions and dynamic pressure treatments are applied to study the helical secondary flows in an experiment curved channel. The agreements of vertically-averaged velocities between the simulated results obtained by using different turbulence models with different pressure solution techniques and the measured data are satisfactory. Their discrepancies with respect to surface elevations, superelevations and secondary flow patterns are discussed.展开更多
How to identify the nested structure of a three-dimensional(3D)hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field...How to identify the nested structure of a three-dimensional(3D)hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field.The main objective of this study was to develop a quantitative method to partition the nested groundwater flow system into different hierarchies in three dimensions.A 3D numerical model with topography derived from the real geomatic data in Jinan,China was implemented to simulate groundwater flow and residence time at the regional scale while the recharge rate,anisotropic permeability and hydrothermal effect being set as climatic and hydrogeological variables in the simulations.The simulated groundwater residence time distribution showed a favorable consistency with the spatial distribution of flow fields.The probability density function of residence time with discontinuous segments indicated the discrete nature of time domain between different flow hierarchies,and it was used to partition the hierarchical flow system into shallow/intermediate/deep flow compartments.The changes in the groundwater flow system can be quantitatively depicted by the climatic and hydrogeological variables.This study provides new insights and an efficient way to analyze groundwater circulation and evolution in three dimensions from the perspective of time domain.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51205004,51475003)Beijing Municipal Natural Science Foundation of China(Grant No.3152010)Beijing Municipal Education Committee Science and Technology Program,China(Grant No.KM201510009004)
文摘Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved.
文摘The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.
基金the National NaturalScience Foundation of China(Grant No.40234051)the Special Plansof Science and Technology of Land Resource Department(Grant No.20010103)+2 种基金the National Important Layout ltems of Basic ResearchDevelopment(Grant No.1999043206)the Fostering Plan Fund forBeyond-Century Excellent Talent the Key Project of Science and Technology Research(O3178)of the Ministry of Education.
文摘Based on field observations and rheology analysis, we perform one analogue experiment and remold the 3D structural frame of Tongling deposit concentrating area firstly. Then we disassemble and dialyze the 3D structures of the model using the methods of "slicing" and "stripping". A series of sliced planes vertical to the fold hinges show similar landscapes of that in the drill hole profiles. Meanwhile, layer stripping analysis indicates that the deformation features of each layer in the model are qualitatively analogical to those obtained from field observations. Through contrasting the 3D structure between the experimental model and the field phenomena, we verify the following 3D deformation features of the caprock in this area: (1) the Tongling area mainly consists of three series of NE S-typed fold groups; (2) in the uniform stress field, the incoherent folds universally develop in different positions, along different axes as well as in different strata; (3) the faults propagate upward which are mostly inter-bedded detachment faults, while the fold amplitudes decrease while going deeper; and (4) the folds and cleavages are highly developed in the Silurian System indicating that the deformation effect of the Indosin-ian-Yanshanian structural layer terminates at this layer, which suggests that the Silurian System is the crucial layer for the inversion between brittle and plastic deformation domains and the underlying strata are subject to the control of another deformation system with distinct properties.
文摘A model is presented for the simulation of reactive gas-solids flows in large industrial reactors. Circulating fluidized bed (CFB) combustors with several thousands of cubic meters reaction volume are probably the largest reactors of this type. A semi-empirical modeling approach has been chosen to model the three-dimensional concentration distributions of gas and solids components and temperatures inside the combustion chamber of such boilers. Two industrial CFB boilers are investigated in detail: the 105 MWe Duisburg combustor in Germany and the 235 MWe Turow combustor in Poland. The semi-empirical model approach is described first. Then the model is used to show how the three-dimensional concentration and temperature fields are formed by the interaction of several local phenomena. Good agreement between simulation and measurements has been achieved.
文摘Following recent insights on structure-cell-function interactions and the critical role of the extracellular matrix(ECM),the latest biofabrication approaches have increasingly focused on designing materials with biomimetic microarchitecture.Divergence electrospinning is a novel fabrication method for three-dimensional(3D)nanofiber scaffolds.It is introduced to produce 3D nanofiber mats that have numerous applications in regenerative medicine and tissue engineering.One of the most important characteristics of 3D nanofiber mats is the density gradient.This study provides a statistical analysis and response surface modeling framework based on experimental data to evaluate the manner by which the geometric designs of double-bevel collectors influence the fiber density gradient.Specifically,variance of analysis and sensitivity analysis were performed to identify parameters that had significant effects,and a response surface model embedded with seven location indicators was developed to predict the spatial distribution of fiber density for different collector designs.It was concluded that the collector height,bevel angle,and their interactions were significant factors influencing the density gradient.This study revealed the sensitivity of system configuration and provided an optimization tool for process controllability of microstructure gradients.
基金supported by the National Natural Science Foundation of China (Grant No.50479034)the Natural Science Foundation of Tianjin (Grant No.09YFSZSF02100)+1 种基金the financial support of the USDA Agriculture Research Service under Specific Research Agreement (Grant No. 58-6408-2-0062)(monitored by the USDA-ARS National Sedimentation Laboratory)the US State Department Agency for International Development under Agreement (Grant No.EE-G-00-02-00015-00) and the University of Mississippi
文摘Most natural rivers are curved channels, where the turbulent flows have a complex helical pattern, as has been extensively studied both numerically and experimentally. The helical flow structure in curved channels has an important bearing on sediment transport, riverbed evolution, and pollutant transport study. In this article, different turbulence closure schemes i.e., the mixing-length model and the k-ε model with different pressure solution techniques i. e., hydrostatic assumptions and dynamic pressure treatments are applied to study the helical secondary flows in an experiment curved channel. The agreements of vertically-averaged velocities between the simulated results obtained by using different turbulence models with different pressure solution techniques and the measured data are satisfactory. Their discrepancies with respect to surface elevations, superelevations and secondary flow patterns are discussed.
基金supported by the National Natural Science Foundation of China(Nos.41807219,41877192,U1906209,42072331)the National Key R&D Program of China(No.2017YFC0505304)the Fundamental Research Funds for Central Public Welfare Research Institutes(Nos.CKSF 2019170/TB,CKSF 2016029/TB)。
文摘How to identify the nested structure of a three-dimensional(3D)hierarchical groundwater flow system is always a difficult problem puzzling hydrogeologists due to the multiple scales and complexity of the 3D flow field.The main objective of this study was to develop a quantitative method to partition the nested groundwater flow system into different hierarchies in three dimensions.A 3D numerical model with topography derived from the real geomatic data in Jinan,China was implemented to simulate groundwater flow and residence time at the regional scale while the recharge rate,anisotropic permeability and hydrothermal effect being set as climatic and hydrogeological variables in the simulations.The simulated groundwater residence time distribution showed a favorable consistency with the spatial distribution of flow fields.The probability density function of residence time with discontinuous segments indicated the discrete nature of time domain between different flow hierarchies,and it was used to partition the hierarchical flow system into shallow/intermediate/deep flow compartments.The changes in the groundwater flow system can be quantitatively depicted by the climatic and hydrogeological variables.This study provides new insights and an efficient way to analyze groundwater circulation and evolution in three dimensions from the perspective of time domain.