期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
2D Materials Boost Advanced Zn Anodes:Principles,Advances,and Challenges 被引量:1
1
作者 Songhe Zheng Wanyu Zhao +3 位作者 Jianping Chen Xiaoli Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期1-22,共22页
Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive resea... Aqueous zinc-ion battery(ZIB)featuring with high safety,low cost,environmentally friendly,and high energy density is one of the most promising systems for large-scale energy storage application.Despite extensive research progress made in developing high-performance cathodes,the Zn anode issues,such as Zn dendrites,corrosion,and hydrogen evolution,have been observed to shorten ZIB’s lifespan seriously,thus restricting their practical application.Engineering advanced Zn anodes based on two-dimensional(2D)materials are widely investigated to address these issues.With atomic thickness,2D materials possess ultrahigh specific surface area,much exposed active sites,superior mechanical strength and flexibility,and unique electrical properties,which confirm to be a promising alternative anode material for ZIBs.This review aims to boost rational design strategies of 2D materials for practical application of ZIB by combining the fundamental principle and research progress.Firstly,the fundamental principles of 2D materials against the drawbacks of Zn anode are introduced.Then,the designed strategies of several typical 2D materials for stable Zn anodes are comprehensively summarized.Finally,perspectives on the future development of advanced Zn anodes by taking advantage of these unique properties of 2D materials are proposed. 展开更多
关键词 Zinc-ion battery large-scale energy storage application Zn anode LIFESPAN 2D materials
下载PDF
A novel approach to large-scale formation of through-hole porous anodic aluminum template 被引量:1
2
作者 Ya Nan Zhang Miao Chen +1 位作者 Zhi Lu Liu Yan Chun Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第11期1371-1374,共4页
A novel anodic oxidization equipment was designed to fabricate a large number of porous anodic alumina (PAA) templates in one time. This approach improved the efficiency of the preparation of the PAA templates remar... A novel anodic oxidization equipment was designed to fabricate a large number of porous anodic alumina (PAA) templates in one time. This approach improved the efficiency of the preparation of the PAA templates remarkably in a normal lab and is expected to be used for the large-scale production in the future. 展开更多
关键词 Porous anodic alumina template anodization large-scale
下载PDF
Effects of sintering temperature on microstructure and performance of Ti-based Ti-Mn alloy anodic material
3
作者 侯永丹 江垚 +1 位作者 雷霆 贺跃辉 《Journal of Central South University》 SCIE EI CAS 2011年第4期966-971,共6页
A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstr... A novel Ti-based Ti-Mn composite anode used for electrolytic manganese dioxide(EMD) fabrication was developed by a two-step heating manganizing technique.The effects of sintering temperature on the manganized microstructure and the performance of the composite anode were studied by scanning electron microscopy(SEM),mechanical properties tests at room temperature and electrochemical methods.The results show that the thickness of the diffusion layer increases with the increase of sintering temperature up to 1 100 °C;whereas,the surface Mn content increases and reaches the maximum at 1 000 °C and then decreases thereafter.Lower surface Mn content is beneficial for the enhanced corrosion resistance and lowered open cell voltage in electrolytic process.The new anode prepared under the optimized conditions has been applied in industry and exhibits superior economic benefits to conventional Ti anodic materials. 展开更多
关键词 Ti-based ti-mn composite anode electrolytic manganese dioxide (EMD) MICROSTRUCTURE electrochemical property corrosion resistance property mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部