Climate changes are likely to increase the risk of numerous extreme weather events throughout the world.The objectives of this study were to investigate and analyze the temporal-spatial variability patterns of tempera...Climate changes are likely to increase the risk of numerous extreme weather events throughout the world.The objectives of this study were to investigate and analyze the temporal-spatial variability patterns of temperature extremes based on daily maximum(TX)and minimum temperature(TN)data collected from 49 meteorological stations in Xinjiang of China during 1960–2015.These temperature data were also used to assess the impacts of altitude on the temperature extremes.Additionally,possible teleconnections with the large-scale circulation pattern(the El Nino-Southern Oscillation,ENSO and Arctic Oscillation,AO)were investigated.Results showed that all percentile indices had trends consistent with warming in most parts of Xinjiang during 1960–2015,but the warming was more pronounced for indices derived from TN compared to those from TX.The minimum TN and maximum TX increased at rates of 0.16℃/10 yr and 0.59℃/10 yr,respectively during 1960–2015.Accordingly,the diurnal temperature range showed a significant decreasing trend of–0.23℃/10 yr for the whole study area.The frequency of the annual average of the warm events showed significant increasing trends while that of the cold events presented decreasing trends.Over the same period,the number of frost days showed a statistically significant decreasing trend of–3.37 d/10 yr.The number of the summer days and the growing season showed significant increasing trends at rates of 1.96 and 2.74 d/10 yr,respectively.The abrupt change year of each index was from the 1980 s to the 1990 s,showing that this periodic interval was a transitional phase between cold and warm climate change.Significant correlations of temperature extremes and elevation included the trends of tropical nights,growing season frequency,and cold spell duration indicator.This result also indicated the clear and complex local influence on climatic extremes.In addition,the relationship between each index of the temperature extremes with large-scale atmospheric circulation(ENSO and AO)demonstrated that the influence of ENSO on each index of the temperature extremes was greater than that of the AO in Xinjiang.展开更多
Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of...Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.展开更多
With a warming climate,temperature extremes have been a main global issue in recent decades due to their potential influence on the sustainable development of human life and natural ecosystems.In this study,12 indicat...With a warming climate,temperature extremes have been a main global issue in recent decades due to their potential influence on the sustainable development of human life and natural ecosystems.In this study,12 indicators of extreme temperature events are used to evaluate the spatiotemporal distribution,periodic structure and teleconnections with large-scale atmospheric circulation in Xinjiang,Northwest China by combining wavelet coherence(WTC) analysis based on continuous wavelet transform(CWT) analysis with the sequential Mann-Kendall test.We find that over the past six decades,the climate in Xinjiang has become warmer and has suffered from increases in the frequency of warm extremes and decreases in the frequency of cold extremes.Warm extremes have mainly occurred in the southern Tianshan Mountains surrounding the Tarim Basin and western part of the Taklamakan Desert,and cold extremes have primarily occurred in the southwestern Altai Mountains and northern foot of the Tianshan Mountains.Extreme temperature events,including warm extremes,cold extremes,and other temperature indices,have significant interannual variability,with the main oscillation periods at smaller(2–4-year band),intermediate(4–7-year band),and greater time scales in recent decades.Furthermore,cold-extreme indices,including frost days,cool days,and cool nights all show a clear changepoint during 1990–1997 at the 95% confidence level,and both ice days and cold spell duration indicator have a potential changepoint during 1981–1986.However,the changing points for warmextreme indices are detected during 1992–1998.The temperature variables are significantly correlated with the EI Ni?o-Southern Oscillation(ENSO) and Arctic Oscillation(AO),but less well correlated with the Pacific Decadal Oscillation(PDO).The phase difference in the WTC spectra is not uniform between temperature extremes and climatic oscillations.Our findings will have important implications for local governments in taking effective measures to mitigate the potential effects of regional climate warming due to human activities in Xinjiang.展开更多
This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average r...This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi.展开更多
From July 19 to 21,2021,Henan,a province in northern China(NC),was affected by severe flooding(referred to hereafter as“21·7”)caused by a prolonged record-breaking extreme precipitation(EP)event.Understanding t...From July 19 to 21,2021,Henan,a province in northern China(NC),was affected by severe flooding(referred to hereafter as“21·7”)caused by a prolonged record-breaking extreme precipitation(EP)event.Understanding the extremes of the large-scale circulation pattern during“21·7”is essential for predicting EP events and preventing future disasters.In this study,daily atmospheric large-scale circulations over NC in the summers from 1979 to 2021 were investigated using the circulation classification method of an obliquely rotated principal component analysis in T-mode(PCT).The geopotential heights at 500 hPa and 925 hPa were applied successively in classification.Among the nine summer circulation patterns found at 500 hPa,the three days of“21·7”belonged to the Type 8 pattern,which had the second highest probability of EP days among all patterns.It was characterized by a southeasterly wind toward North China Plain driven by a dipole geopotential height field,with the West Pacific subtropical high(WPSH)extending far north to 30°N and low pressure to the south near NC.Tropical cyclones(TCs)occurred on 72.5%of EP days,in which larger amounts of precipitation and a longer duration of EP days were found along the mountains in NC,as compared with other patterns.The distribution of EP events under this pattern was mainly influenced by the location of the low pressure at 925 hPa in the dipole.The subtype 8-3 circulation,with low pressure in the east of Taiwan Island,included“21·7”and accounted for 1.6%of all summer days.Typhoon In-fa,together with the WPSH,gave rise to intense column integrated moisture flux convergence(IMFC)via the southeasterly wind to Henan,which occurred continuously during the 3 days of“21·7”,resulting in the largest(second largest)mean IMFC among 3 consecutive EP days under type 8(all types)during the past 43 summers in NC.Further analysis revealed that the large-scale dynamic process could not completely explain the record-breaking EP during“21·7”,indicating possible contributions of other dynamic processes related to meso-scale convective storms.展开更多
An extraordinary and unprecedented heatwave swept across western North America(i.e.,the Pacific Northwest)in late June of 2021,resulting in hundreds of deaths,a massive die-off of sea creatures off the coast,and horri...An extraordinary and unprecedented heatwave swept across western North America(i.e.,the Pacific Northwest)in late June of 2021,resulting in hundreds of deaths,a massive die-off of sea creatures off the coast,and horrific wildfires.Here,we use observational data to find the atmospheric circulation variabilities of the North Pacific and Arctic-Pacific-Canada patterns that co-occurred with the development and mature phases of the heatwave,as well as the North America pattern,which coincided with the decaying and eastward movement of the heatwave.Climate models from the Coupled Model Intercomparison Project(Phase 6)are not designed to simulate a particular heatwave event like this one.Still,models show that greenhouse gases are the main reason for the long-term increase of average daily maximum temperature in western North America in the past and future.展开更多
[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling plantho...[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast.展开更多
An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from whi...An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin展开更多
The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it rea...The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.展开更多
The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, whic...The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calculation of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully selected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error involved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments. The two waves have been integrated for more than 300 days and 100 days respectively by using the model and both of them are propagating westward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model's troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days espectively.The explanation of this interesting phenomena is still under investigation.展开更多
The amount and the form of precipitation have significant effects on glacier mass balances in high al- titude mountain areas by controlling the accumulation, the ablation and the energy balance of a glacier through im...The amount and the form of precipitation have significant effects on glacier mass balances in high al- titude mountain areas by controlling the accumulation, the ablation and the energy balance of a glacier through impact on the surface albedo. The liquid precipitation has negative effects on glacier accumulation and may in- crease the ablation of surface ice through the heat input for melting. The timing and the forms of precipitation over glacierized regions depend on the weather processes both locally and regionally. Early studies showed that regional to large-scale atmospheric circulation processes play a key role in affecting the precipitation events over glaciers. This paper analyzed the relationship between the inter-annual variability of the summertime precipitation over the Tuyuksu Glacier and the atmospheric circulation types, which related to various atmospheric circulation types in the Northern Hemisphere. Results indicated that the decrease in the duration of zonal processes and the increase in the meridional northern processes were observed in the last decade. The total summer precipitation associated with these processes also increased along with an increase of summertime solid precipitation. Although the decadal fluctuation of glaciological parameters were found in dependent of the above large-scale atmospheric circulation processes, global warming was a dominant factor leading to the mass loss in the recent decades under the back- ground of the increase in precipitation over the Tuyuksu Glacier.展开更多
Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing t...Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing the observational data and the output of an atmospheric general circulation model (AGCM). The study indicates that the sea ice condition of the Barents Sea from May to July may be interrelated with the atmospheric circulation of June. When there is more than average sea ice in the Barents Sea, the local geopotential height of the 500-hPa level will decrease, and the same height in the Lake Baikal and Okhotsk regions will increase and decrease respectively to form a wave-chain structure over North Eurasia. This kind of anomalous height pattern is beneficial to more precipitation in the south part of East China and less in the north.展开更多
In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–201...In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–2013. The formation mechanisms of the severe RPHEs were investigated with focus on the atmospheric circulation and dynamic mechanisms. Results indicated that:(1) 49 RPHEs occurred during the past 34 years.(2) The severe RPHEs could be categorized into two types according to the large-scale circulation, i.e. the zonal westerly airflow(ZWA) type and the high-pressure ridge(HPR) type. When the ZWA-type RPHEs occurred, the BTH region was controlled by near zonal westerly airflow in the mid–upper troposphere.Southwesterly winds prevailed in the lower troposphere, and near-surface wind speeds were only 1–2 ms^-1. Warm and humid air originating from the northwestern Pacific was transported into the region, where the relative humidity was 70% to 80%, creating favorable moisture conditions. When the HPR-type RPHEs appeared, northwesterly airflow in the mid–upper troposphere controlled the region. Westerly winds prevailed in the lower troposphere and the moisture conditions were relatively weak.(3) Descending motion in the mid-lower troposphere caused by the above two circulation types provided a crucial dynamic mechanism for the formation of the two types of RPHEs. The descending motion contributed to a reduction in the height of the planetary boundary layer(PBL), which generated an inversion in the lower troposphere. This inversion trapped the abundant pollution and moisture in the lower PBL, leading to high concentrations of pollutants.展开更多
The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data...The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon.展开更多
Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SI...Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SINTEX-F coupled model is used to build a statistical model to predict the cyclogenesis frequency over the South China Sea and the western North Pacific. The SINTEX-F coupled model has relatively good prediction skill for some circulation features associated with the cyclogenesis frequency including sea level pressure, wind vertical shear, Intertropical Convergence Zone and cross-equatorial air flows. Predictors derived from these large-scale circulations have good relationships with the cyclogenesis frequency over the South China Sea and the western North Pacific. A multivariate linear regression(MLR) model is further designed using these predictors. This model shows good prediction skill with the anomaly correlation coefficient reaching, based on the cross validation, 0.71 between the observed and predicted cyclogenesis frequency. However, it also shows relatively large prediction errors in extreme tropical cyclone years(1994 and 1998, for example).展开更多
Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources...Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell.展开更多
In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with th...In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.展开更多
This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift, is removed, the residual is characterized and related to large-scale temperature and ...This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift, is removed, the residual is characterized and related to large-scale temperature and atmospheric circulation. The residual shows an overall upward trend, although this result depends on the uplift rate used. However, the seasonal distribution of the trend is uneven. There are even two months (June and August) that show a negative trend. The significant trend in August may be linked to fresh water input that is controlled by precipitation. The influence of the atmospheric conditions on the sea level is mainly manifested through zonal winds, vorticity and temperature. While the wind is important in the period January-May, the vorticity plays a main role during June and December. A successful linear multiple-regression model linking the climatic variables (zonal winds, vorticity and mean air temperature during the previous two months) and the sea level is established for each month. An independent verification of the model shows that it has considerable skill in simulating the variability.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grants No.51979071,51779073,and 51809073)the Jiangsu Provincial Natural Science Fund for Distinguished Young Scholars(Grant No.BK20180021)the National Ten Thousand Talent Program for Young Top-Notch Talents,and the Six Talent Peaks Project of Jiangsu Province.
基金Under the auspices of Natural Science Foundation of Jiangsu Province(No.BK20171292)China Postdoctoral Science Foundation(No.2017M611922,2018T110559)Postdoctoral Science Foundation of Jiangsu Province(No.1701186B).
文摘Climate changes are likely to increase the risk of numerous extreme weather events throughout the world.The objectives of this study were to investigate and analyze the temporal-spatial variability patterns of temperature extremes based on daily maximum(TX)and minimum temperature(TN)data collected from 49 meteorological stations in Xinjiang of China during 1960–2015.These temperature data were also used to assess the impacts of altitude on the temperature extremes.Additionally,possible teleconnections with the large-scale circulation pattern(the El Nino-Southern Oscillation,ENSO and Arctic Oscillation,AO)were investigated.Results showed that all percentile indices had trends consistent with warming in most parts of Xinjiang during 1960–2015,but the warming was more pronounced for indices derived from TN compared to those from TX.The minimum TN and maximum TX increased at rates of 0.16℃/10 yr and 0.59℃/10 yr,respectively during 1960–2015.Accordingly,the diurnal temperature range showed a significant decreasing trend of–0.23℃/10 yr for the whole study area.The frequency of the annual average of the warm events showed significant increasing trends while that of the cold events presented decreasing trends.Over the same period,the number of frost days showed a statistically significant decreasing trend of–3.37 d/10 yr.The number of the summer days and the growing season showed significant increasing trends at rates of 1.96 and 2.74 d/10 yr,respectively.The abrupt change year of each index was from the 1980 s to the 1990 s,showing that this periodic interval was a transitional phase between cold and warm climate change.Significant correlations of temperature extremes and elevation included the trends of tropical nights,growing season frequency,and cold spell duration indicator.This result also indicated the clear and complex local influence on climatic extremes.In addition,the relationship between each index of the temperature extremes with large-scale atmospheric circulation(ENSO and AO)demonstrated that the influence of ENSO on each index of the temperature extremes was greater than that of the AO in Xinjiang.
基金Under the auspices of National Natural Science Foundation of China(No.52279016,51909106,51879108,42002247,41471160)Natural Science Foundation of Guangdong Province,China(No.2020A1515011038,2020A1515111054)+1 种基金Special Fund for Science and Technology Development in 2016 of Department of Science and Technology of Guangdong Province,China(No.2016A020223007)the Project of Jinan Science and Technology Bureau(No.2021GXRC070)。
文摘Huaihe River Basin(HRB) is located in China’s north-south climatic transition zone,which is very sensitive to global climate change.Based on the daily maximum temperature,minimum temperature,and precipitation data of 40 meteorological stations and nine monthly large-scale ocean-atmospheric circulation indices data during 1959–2019,we present an assessment of the spatial and temporal variations of extreme temperature and precipitation events in the HRB using nine extreme climate indices,and analyze the teleconnection relationship between extreme climate indices and large-scale ocean-atmospheric circulation indices.The results show that warm extreme indices show a significant(P < 0.05) increasing trend,while cold extreme indices(except for cold spell duration) and diurnal temperature range(DTR) show a significant decreasing trend.Furthermore,all extreme temperature indices show significant mutations during 1959-2019.Spatially,a stronger warming trend occurs in eastern HRB than western HRB,while maximum 5-d precipitation(Rx5day) and rainstorm days(R25) show an increasing trend in the southern,central,and northwestern regions of HRB.Arctic oscillation(AO),Atlantic multidecadal oscillation(AMO),and East Atlantic/Western Russia(EA/WR) have a stronger correlation with extreme climate indices compared to other circulation indices.AO and AMO(EA/WR) exhibit a significant(P < 0.05) negative(positive)correlation with frost days and diurnal temperature range.Extreme warm events are strongly correlated with the variability of AMO and EA/WR in most parts of HRB,while extreme cold events are closely related to the variability of AO and AMO in eastern HRB.In contrast,AMO,AO,and EA/WR show limited impacts on extreme precipitation events in most parts of HRB.
基金supported by the National Natural Science Foundation of China (No.41672246)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan)(No.1910491T05)。
文摘With a warming climate,temperature extremes have been a main global issue in recent decades due to their potential influence on the sustainable development of human life and natural ecosystems.In this study,12 indicators of extreme temperature events are used to evaluate the spatiotemporal distribution,periodic structure and teleconnections with large-scale atmospheric circulation in Xinjiang,Northwest China by combining wavelet coherence(WTC) analysis based on continuous wavelet transform(CWT) analysis with the sequential Mann-Kendall test.We find that over the past six decades,the climate in Xinjiang has become warmer and has suffered from increases in the frequency of warm extremes and decreases in the frequency of cold extremes.Warm extremes have mainly occurred in the southern Tianshan Mountains surrounding the Tarim Basin and western part of the Taklamakan Desert,and cold extremes have primarily occurred in the southwestern Altai Mountains and northern foot of the Tianshan Mountains.Extreme temperature events,including warm extremes,cold extremes,and other temperature indices,have significant interannual variability,with the main oscillation periods at smaller(2–4-year band),intermediate(4–7-year band),and greater time scales in recent decades.Furthermore,cold-extreme indices,including frost days,cool days,and cool nights all show a clear changepoint during 1990–1997 at the 95% confidence level,and both ice days and cold spell duration indicator have a potential changepoint during 1981–1986.However,the changing points for warmextreme indices are detected during 1992–1998.The temperature variables are significantly correlated with the EI Ni?o-Southern Oscillation(ENSO) and Arctic Oscillation(AO),but less well correlated with the Pacific Decadal Oscillation(PDO).The phase difference in the WTC spectra is not uniform between temperature extremes and climatic oscillations.Our findings will have important implications for local governments in taking effective measures to mitigate the potential effects of regional climate warming due to human activities in Xinjiang.
基金supported by the National Natural Science Foundation of China (41575091)China Meteorological Administration Training Centre scientific research project (Study on impacting factors of regional climate in China)+1 种基金Shanxi Provincial Meteorological Bureau project (SXKMSQH20236329)Heze University Research Fund Program (Poverty Alleviation Project) (XY18FP08)
文摘This article utilizes daily precipitation data from 28 national meteorological stations in northern Shanxi Province spanning from 1972 to 2020,and the US NCEP/NCAR monthly average reanalysis and ERA5 monthly average reanalysis data.The study employs techniques such as empirical orthogonal function(EOF)decomposition,MannKendall mutation and other methods to investigate the spatiotemporal distribution of extreme precipitation index in northern Shanxi and their correlation with atmospheric circulation.The research results show that:the absolute index,relative index,intensity index and sustained dry period index(CDD)in the continuous index appear from southwest to northeast.The spatial distribution characteristics of the central region decrease,while the continuous wet period(CWD)decreases from the central to the east and west.The three indices Rx1day,Rx5day,and CWD mutated in 1978,1975,and 1983 respectively,and other extreme precipitation indices all appeared in a sudden change from a low-value period to a high-value period occurred around 2010.In the high-value years of the summer extreme precipitation index,there is a significant negative anomaly in the height field in the mid-high latitude regions of Eurasia.Northern Shanxi is controlled by a broad low-pressure trough in the Lake Baikal area.Water vapor transported via the east,west,and south routes converges in the northern Shanxi region and encounters cold air from the north.There is a strong upward motion anomaly at 500 hPa in the troposphere,and the dynamic conditions of upper-level divergence and lower-level convergence lead to more summer extreme precipitation in the northern Shanxi region.Conversely,in the low-value years of the summer extreme precipitation index,northern Shanxi is affected by a strong high-pressure ridge north of Lake Baikal.There is a downward motion anomaly at 500 hPa,and the northern Shanxi region lacks water vapor.The cold and warm air cannot converge,and both the water vapor conditions and dynamic conditions are poor,which is not conducive to the production of extreme precipitation in northern Shanxi.
基金supported by the National Natural Science Foundation of China[grant number 42025502]the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004].
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.42030607&41975001)+1 种基金the 2018 Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2018LASW-B17)Forecaster Research Project of China Meteorological Administration(Grant No.CMAYBY2019-137)。
文摘From July 19 to 21,2021,Henan,a province in northern China(NC),was affected by severe flooding(referred to hereafter as“21·7”)caused by a prolonged record-breaking extreme precipitation(EP)event.Understanding the extremes of the large-scale circulation pattern during“21·7”is essential for predicting EP events and preventing future disasters.In this study,daily atmospheric large-scale circulations over NC in the summers from 1979 to 2021 were investigated using the circulation classification method of an obliquely rotated principal component analysis in T-mode(PCT).The geopotential heights at 500 hPa and 925 hPa were applied successively in classification.Among the nine summer circulation patterns found at 500 hPa,the three days of“21·7”belonged to the Type 8 pattern,which had the second highest probability of EP days among all patterns.It was characterized by a southeasterly wind toward North China Plain driven by a dipole geopotential height field,with the West Pacific subtropical high(WPSH)extending far north to 30°N and low pressure to the south near NC.Tropical cyclones(TCs)occurred on 72.5%of EP days,in which larger amounts of precipitation and a longer duration of EP days were found along the mountains in NC,as compared with other patterns.The distribution of EP events under this pattern was mainly influenced by the location of the low pressure at 925 hPa in the dipole.The subtype 8-3 circulation,with low pressure in the east of Taiwan Island,included“21·7”and accounted for 1.6%of all summer days.Typhoon In-fa,together with the WPSH,gave rise to intense column integrated moisture flux convergence(IMFC)via the southeasterly wind to Henan,which occurred continuously during the 3 days of“21·7”,resulting in the largest(second largest)mean IMFC among 3 consecutive EP days under type 8(all types)during the past 43 summers in NC.Further analysis revealed that the large-scale dynamic process could not completely explain the record-breaking EP during“21·7”,indicating possible contributions of other dynamic processes related to meso-scale convective storms.
基金supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (GML2019ZD0306)National Natural Science Foundation of China (Grant Nos. 41731173 and 42192564)+5 种基金National Key R&D Program of China (2019YFA0606701)Strategic Priority Research Program of Chinese Academy of Sciences (XDB42000000 and XDA20060502)Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (ISEE2021ZD01)Independent Research Project Program of State Key Laboratory of Tropical Oceanography (Grand No. LTOZZ2004)Leading Talents of Guangdong Province Programsupported by the High Performance Computing Division in the South China Sea Institute of Oceanology
文摘An extraordinary and unprecedented heatwave swept across western North America(i.e.,the Pacific Northwest)in late June of 2021,resulting in hundreds of deaths,a massive die-off of sea creatures off the coast,and horrific wildfires.Here,we use observational data to find the atmospheric circulation variabilities of the North Pacific and Arctic-Pacific-Canada patterns that co-occurred with the development and mature phases of the heatwave,as well as the North America pattern,which coincided with the decaying and eastward movement of the heatwave.Climate models from the Coupled Model Intercomparison Project(Phase 6)are not designed to simulate a particular heatwave event like this one.Still,models show that greenhouse gases are the main reason for the long-term increase of average daily maximum temperature in western North America in the past and future.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(200903051)~~
文摘[Objective] This study aimed to establish models based on atmospheric cir- culation indices for forecasting the area attacked by rice planthopper every year, and to provide guide for preventing and controlling planthopper damage. [Method] The data related to rice planthopper occurrence and atmospheric circulation were collected and analyzed with the method of stepwise regression to establish the prediction models. [Result] The factors significantly related to the area attacked by rice plan-thopper were selected. Two types of prediction models were established. One was for Sogatella furcifera (Horvath), based on Atlantic-Europe circulation pattern W in October in that year, Pacific polar vortex area index in October in that year, North America subtropical high index in August in that year, Atlantic-Europe circulation pattern W in June in that year, northern boundary of North America subtropical high in February in that year, Atlantic-Europe polar vortex intensity index in October in that year and Asia polar vortex intensity index in November in the last year; the other type of prediction models were for Nilaparvata lugens (Stal), based on the Eastern Pacific subtropical high intensity index in July in that year, northern hemi- sphere polar vortex area index in October in the last year, Asia polar vortex strength index in November in the last year, north boundary of North America-At- lantic subtropical high in September in that year, north boundary of North Africa-At- lantic-North America subtropical high in January in that year, sunspot in September of the last year and eastern Pacific subtropical high area index in September in that year. [Conclusion] With the stepwise regression, the forecasting equations of the rice planthopper occurrence established based on the atmospheric circulation indices could be used for actual forecast.
文摘An analysis of time variations of the earth’s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-decrease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin
基金the CAS Key Project (KZCXZ-203)the NSFC Project (No. 49735160 and No.40075020)IAP Innovation Fund (No. 8-1307).
文摘The East Asian summer monsoon (EASM) underwent an interdecadal variation with interannual variations during the period from 1958 to 1997, its index tended to decline from a higher stage in the mid-1960,s until it reached a lower stage after 1980/s. Correlation analysis reveals that EASM is closely related with the global atmospheric circulation and sea surface temperature (SST). The differences between the weak and strong stage of EASM shows that, the summer monsoon circulation over East Asia and North Africa is sharply weakened, in the meantime, the westerlies in high latitudes and the trade-wind over the tropical ocean are also changed significantly. Over the most regions south of the northern subtropics, both air temperature in the lower troposphere and SST tended to rise compared with the strong stage of EASM. It is also revealed that the ocean-atmosphere interaction over the western Pacific and Indian Ocean plays a key role in interannual to interdecadal variation of EASM, most probably, the subtropical indian Ocean is more important. On the other hand, the ENSO event is less related to EASM at least during the concerned period.
文摘The dynamical framework of the nine-level version of the IAP AGCM is presented in this paper. The emphasis of the model's description is put on the following two aspects:(1) A model's standard atmosphere, which is a satisfactory approximation to the observed troposphere and lower stratosphere standard atmosphere, is introduced into the equations of the model to permit a more accurate calculation of the vertical transport terms, especially near the tropopause; (2) The vertical levels of the model are carefully selected to guarantee a smooth dependence of layer thickness upon pressure in order to reduce the truncation error involved in the unequal interval vertical finite-differencing. For testing the model, two kinds of linear baroclinic Rossby-Haurwitz waves, one of which has a dynamically stable vertical structure and the other has a relatively unstable one, are constructed to provide initial conditions for numerical experiments. The two waves have been integrated for more than 300 days and 100 days respectively by using the model and both of them are propagating westward with almost identical phase-speed during the time period of the integrations. No obvious change of the wave patterns is found at the levels in the model's troposphere. The amplitudes of both two waves at the uppermost level, however, exhibit rather significant oscillation with time, of which the periods are exactly 20 days and 25 days espectively.The explanation of this interesting phenomena is still under investigation.
基金funded by International Science & Technology Cooperation Program of China (2010DFA92720-23, 2012BAC19B07)Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-YW-GJ04)carried out by the Institute of Geography,Republic of Kazakhstan with the support from the Ministry of Education and Science of Kazakhstan
文摘The amount and the form of precipitation have significant effects on glacier mass balances in high al- titude mountain areas by controlling the accumulation, the ablation and the energy balance of a glacier through impact on the surface albedo. The liquid precipitation has negative effects on glacier accumulation and may in- crease the ablation of surface ice through the heat input for melting. The timing and the forms of precipitation over glacierized regions depend on the weather processes both locally and regionally. Early studies showed that regional to large-scale atmospheric circulation processes play a key role in affecting the precipitation events over glaciers. This paper analyzed the relationship between the inter-annual variability of the summertime precipitation over the Tuyuksu Glacier and the atmospheric circulation types, which related to various atmospheric circulation types in the Northern Hemisphere. Results indicated that the decrease in the duration of zonal processes and the increase in the meridional northern processes were observed in the last decade. The total summer precipitation associated with these processes also increased along with an increase of summertime solid precipitation. Although the decadal fluctuation of glaciological parameters were found in dependent of the above large-scale atmospheric circulation processes, global warming was a dominant factor leading to the mass loss in the recent decades under the back- ground of the increase in precipitation over the Tuyuksu Glacier.
基金This study was supported jointly by the Project ZKCX2-SW-210the"National Key Programme for Developing Basic Sciences of China"(G1998040900)the National Natural Science Foundation of China under Grant No.40135020.
文摘Possible influences of the Barents Sea ice anomalies on the Eurasian atmospheric circulation and the East China precipitation distribution in the late spring and early summer (May-June) are investigated by analyzing the observational data and the output of an atmospheric general circulation model (AGCM). The study indicates that the sea ice condition of the Barents Sea from May to July may be interrelated with the atmospheric circulation of June. When there is more than average sea ice in the Barents Sea, the local geopotential height of the 500-hPa level will decrease, and the same height in the Lake Baikal and Okhotsk regions will increase and decrease respectively to form a wave-chain structure over North Eurasia. This kind of anomalous height pattern is beneficial to more precipitation in the south part of East China and less in the north.
基金jointly sponsored by the National Basic Research Program of China(973 Program)(Grant No.2013CB430202)the National Natural Science Foundation of China(Grant No.41401056)+1 种基金the China Meteorological Administration Special Public Welfare Research Fund(Grant No.GYHY201406001)the Research Innovation Program for College Graduates of Jiangsu Province(Grant No.KYLX15 0858)
文摘In this study, regional persistent haze events(RPHEs) in the Beijing–Tianjin–Hebei(BTH) region were identified based on the Objective Identification Technique for Regional Extreme Events for the period 1980–2013. The formation mechanisms of the severe RPHEs were investigated with focus on the atmospheric circulation and dynamic mechanisms. Results indicated that:(1) 49 RPHEs occurred during the past 34 years.(2) The severe RPHEs could be categorized into two types according to the large-scale circulation, i.e. the zonal westerly airflow(ZWA) type and the high-pressure ridge(HPR) type. When the ZWA-type RPHEs occurred, the BTH region was controlled by near zonal westerly airflow in the mid–upper troposphere.Southwesterly winds prevailed in the lower troposphere, and near-surface wind speeds were only 1–2 ms^-1. Warm and humid air originating from the northwestern Pacific was transported into the region, where the relative humidity was 70% to 80%, creating favorable moisture conditions. When the HPR-type RPHEs appeared, northwesterly airflow in the mid–upper troposphere controlled the region. Westerly winds prevailed in the lower troposphere and the moisture conditions were relatively weak.(3) Descending motion in the mid-lower troposphere caused by the above two circulation types provided a crucial dynamic mechanism for the formation of the two types of RPHEs. The descending motion contributed to a reduction in the height of the planetary boundary layer(PBL), which generated an inversion in the lower troposphere. This inversion trapped the abundant pollution and moisture in the lower PBL, leading to high concentrations of pollutants.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW- Q11-04)the National Basic Research Program of China (Grant No. 2010CB950402)the National Natural Science Foundation of China (Grant No. 40975052)
文摘The interannual variability of wintertime snow depth over the Tibetan Plateau(TP) and related atmospheric circulation anomalies were investigated based on observed snow depth measurements and NCEP/NCAR reanalysis data.Empirical orthogonal function(EOF) analysis was applied to identify the spatio-temporal variability of wintertime TP snow depth.Snow depth anomalies were dominated by a monopole pattern over the TP and a dipole structure with opposite anomalies over the southeastern and northwestern TP.The atmospheric circulation conditions responsible for the interannual variability of TP snow depth were examined via regression analyses against the principal component of the most dominant EOF mode.In the upper troposphere,negative zonal wind anomalies over the TP with extensively positive anomalies to the south indicated that the southwestward shift of the westerly jet may favor the development of surface cyclones over the TP.An anomalous cyclone centered over the southeastern TP was associated with the anomalous westerly jet,which is conducive to heavier snowfall and results in positive snow depth anomalies.An anomalous cyclone was observed at 500 hPa over the TP,with an anomalous anticyclone immediately to the north,suggesting that the TP is frequently affected by surface cyclones.Regression analyses revealed that significant negative thickness anomalies exist around the TP from March to May,with a meridional dipole anomaly in March.The persistent negative anomalies due to more winter TP snow are not conducive to earlier reversal of the meridional temperature gradient,leading to a possible delay in the onset of the Asian summer monsoon.
基金Specialized Science and Technology Project for Public Welfare Industry(GYHY200906015)National Basic Research Program of China(973 Program,2010CB428606)Key Technologies R&D Program of China(2009BAC51B05)
文摘Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SINTEX-F coupled model is used to build a statistical model to predict the cyclogenesis frequency over the South China Sea and the western North Pacific. The SINTEX-F coupled model has relatively good prediction skill for some circulation features associated with the cyclogenesis frequency including sea level pressure, wind vertical shear, Intertropical Convergence Zone and cross-equatorial air flows. Predictors derived from these large-scale circulations have good relationships with the cyclogenesis frequency over the South China Sea and the western North Pacific. A multivariate linear regression(MLR) model is further designed using these predictors. This model shows good prediction skill with the anomaly correlation coefficient reaching, based on the cross validation, 0.71 between the observed and predicted cyclogenesis frequency. However, it also shows relatively large prediction errors in extreme tropical cyclone years(1994 and 1998, for example).
基金Supported by National Key Programme for Developing Basic Sciences G1998040900 Part 1 and IAPInnovation Foundation 8-1308.
文摘Using the summer (June to August) monthly mean data of the National Centers for Environmental Predictions (NCEP) - National Center for Atmospheric Research (NCAR) reanalysis from 1980 to 1997, atmospheric heat sources and moisture sinks are calculated. Anomalous circulation and the vertically integrated heat source with the vertical integrated moisture sink and outgoing longwave radiation (OLR) flux are examined based upon monthly composites for 16 great wet-spells and 8 great dry-spells over the middle-lower reaches of the Yangtze River. The wind anomaly exhibits prominent differences between the great wet-spell and the great dry-spell over the Yangtze River Valley. For the great wet-spell, the anomalous southerly from the Bay of Bengal and the South China Sea and the anomalous northerly over North China enhanced low-level convergence toward a narrow latitudinal belt area (the middle-lower reaches of the Yangtze River). The southerly anomaly is connected with an anticyclonic anomalous circulation system centered at 22 degreesN, 140 degreesE and the northerly anomaly is associated with a cyclonic anomalous circulation system centered at the Japan Sea. In the upper level, the anomalous northwesterly between an anticyclonic anomalous system with the center at 23 degreesN, 105 degreesE and a cyclonic anomalous system with the center at Korea diverged over the middle-lower reaches of the Yangtze River. On the contrary, for the great dry-spell, the anomalous northerly over South China and the anomalous southerly over North China diverged from the Yangtze River Valley in the low level. The former formed in the western part of a cyclonic anomalous system centered at 23 degreesN, 135 degreesE. The latter was located in the western ridge of an anticyclonic anomalous system in the northwestern Pacific. The upper troposphere showed easterly anomaly that converged over the middle-lower reaches of the Yangtze River. A cyclonic anomalous system in South China and an anticyclonic system centered in the Japan Sea enhanced the easterly. Large atmospheric heat source anomalies of opposite signs existed over the western Pacific - the South China Sea, with negative in the great wet-spell and positive in the great dry-spell. The analysis of heat source also revealed positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell over the Yangtze River valley. The changes of the moisture sink and OLR were correspondingly altered, implying the change of heat source anomaly is due to the latent heat releasing of convective activity. Over the southeastern Tibetan Plateau- the Bay of Bengal, the analysis of heat source shows positive anomalous heat sources during the great wet-spell and negative anomalous heat sources during the great dry-spell because of latent heating change. The change of divergent wind coexisted with the change of heat source. In the great wet-spell, southerly divergent wind anomaly in the low level and northerly divergent wind anomaly in high-level are seen over South China. These divergent wind anomalies are helpful to the low-level convergence anomaly and high-level divergence anomaly over the Yangtze River valley. The low-level northerly divergent wind anomaly and high-level southerly divergent wind anomaly over South China reduced the low-level convergence and high-level divergence over the Yangtze River valley during the great dry-spell.
基金supported by the National Natural Science Foundation of China under Grant 41775073
文摘In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.
文摘This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift, is removed, the residual is characterized and related to large-scale temperature and atmospheric circulation. The residual shows an overall upward trend, although this result depends on the uplift rate used. However, the seasonal distribution of the trend is uneven. There are even two months (June and August) that show a negative trend. The significant trend in August may be linked to fresh water input that is controlled by precipitation. The influence of the atmospheric conditions on the sea level is mainly manifested through zonal winds, vorticity and temperature. While the wind is important in the period January-May, the vorticity plays a main role during June and December. A successful linear multiple-regression model linking the climatic variables (zonal winds, vorticity and mean air temperature during the previous two months) and the sea level is established for each month. An independent verification of the model shows that it has considerable skill in simulating the variability.