Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the loc...The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour.展开更多
Stochastic geometry is widely employed to model cellular network. But in most existing works, base stations(BSs) are modelled following a homogeneous Poisson point process(PPP) for one-tier network, or several indepen...Stochastic geometry is widely employed to model cellular network. But in most existing works, base stations(BSs) are modelled following a homogeneous Poisson point process(PPP) for one-tier network, or several independent homogeneous PPP for multi-tier network, which ignore the dependence among BSs. In this paper, a three-tier UDN(Ultra dense network) with Macrocell BSs(MBS) for basic coverage, Picocell BSs(PBSs) deployed outside the coverage area of MBSs for compensating coverage holes, and Femtocell BSs(FBSs) surrounding MBSs for capacity improvement modelled by point process with inter-tier dependence is proposed. The tier association probability, the coverage probability and area spectrum efficiency(ASE) are derived. Simulation results validate our derivation, and results show that the proposed network model has 25%-45% performance gain in ASE.展开更多
The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to...The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.展开更多
Measure is a map from the reality or experimental world to the mathematical world, through which people can more easily understand the properties of entities and the relationship between them. But the traditional soft...Measure is a map from the reality or experimental world to the mathematical world, through which people can more easily understand the properties of entities and the relationship between them. But the traditional software measurement methods have been unable to effectively measure this large-scale software. Therefore, trustworthy measurement gives an accurate measurement to these emerging features, providing valuable perspectives and different research dimensions to understand software systems. The paper introduces the complex network theory to software measurement methods and proposes a statistical measurement methodology. First we study the basic parameters of the complex network, and then introduce two new measurement parameters: structural holes, matching coefficient.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
基金supported by the National Natural Science Foundation of China(Grants No.52001149,52039005,and 51861165102)the Research Funds for the Central Universities(Grants No.TKS20210102,TKS20210110,and TKS20210303)the Tianjin Science and Technology Planning Project(Grant No.17PTYPHZ00080).
文摘The Keulegan-Carpenter(KC)number is the main dimensionless parameter that affects the local scour of offshore wind power monopile foundations.This study conducted large-scale(1:13)physical model tests to study the local scour shape,equilibrium scour depth,and local scour volume of offshore wind power monopiles under the action of irregular waves with different KC numbers.Systematic experiments were carried out with the KC number ranging from 1.0 to 13.0.With a small KC number(KC<6),and especially when the KC number was less than 4,the scour mainly occurred on both cross-flow sides of the monopile with a low scour depth.When the KC number exceeded 4,the shape of the scour hole changed from a fan to an ellipse,and the maximum scour depth increased significantly with KC.With a large KC number(KC>6),the proposed method better predicted the equilibrium scour depth when the wave broke.In addition,according to the results of three-dimensional terrain scanning,the relationship between the local equilibrium scour volume of a single offshore wind power monopile and the KC number was derived.This provided a rational method for estimation of the riprap redundancy for monopile protection against scour.
基金partially supported by National 863 Program (2014AA01A702)national major project (2016ZX03001011-005)national natural science foundation project (61521061)
文摘Stochastic geometry is widely employed to model cellular network. But in most existing works, base stations(BSs) are modelled following a homogeneous Poisson point process(PPP) for one-tier network, or several independent homogeneous PPP for multi-tier network, which ignore the dependence among BSs. In this paper, a three-tier UDN(Ultra dense network) with Macrocell BSs(MBS) for basic coverage, Picocell BSs(PBSs) deployed outside the coverage area of MBSs for compensating coverage holes, and Femtocell BSs(FBSs) surrounding MBSs for capacity improvement modelled by point process with inter-tier dependence is proposed. The tier association probability, the coverage probability and area spectrum efficiency(ASE) are derived. Simulation results validate our derivation, and results show that the proposed network model has 25%-45% performance gain in ASE.
基金supported by the National Natural Science Foundation of China (grant Nos. 11922303, 119201003 and 12021003)supported by Hubei province Natural Science Fund for the Distinguished Young Scholars (No.2019CFA052)supported by CAS Project for Young Scientists in Basic Research YSBR-006。
文摘The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.
文摘Measure is a map from the reality or experimental world to the mathematical world, through which people can more easily understand the properties of entities and the relationship between them. But the traditional software measurement methods have been unable to effectively measure this large-scale software. Therefore, trustworthy measurement gives an accurate measurement to these emerging features, providing valuable perspectives and different research dimensions to understand software systems. The paper introduces the complex network theory to software measurement methods and proposes a statistical measurement methodology. First we study the basic parameters of the complex network, and then introduce two new measurement parameters: structural holes, matching coefficient.