Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(...Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.展开更多
A study was carried out in the 50-ha Korup Forest Dynamic Plot in South West Cameroon, to evaluate the diversity of mycorrhizal associations as well as to determine the effect of habitat types on the type of mycorrhiz...A study was carried out in the 50-ha Korup Forest Dynamic Plot in South West Cameroon, to evaluate the diversity of mycorrhizal associations as well as to determine the effect of habitat types on the type of mycorrhizal association. A total of 781 individual trees belonging to 51 families, 165 genera and 252 tree species, were sampled from the four habitat types found in the plot: low drier, hill slope, ridge top and wetland complexes. In each habitat type, all stems ≤ 1 cm depth at breast height had already been tagged, measured, mapped and identified to the species level. Root samples were collected, cleared, stained and examined microscopically for mycorrhizal type. Of the total number of species sampled, 248 (98.41%) formed mycorrhizal associations with only 4 (1.59%) being non mycorrhizal. For mycorrhizal trees, 232 (93.55%) formed exclusively arbuscular mycorrhiza, 10 (4.03%) formed ectomycorrhiza, while 6 (2.42%) formed both ecto- and arbuscular mycorrhiza. The ridge top harbored the least number (152) of mycorrhizal trees while the low drier area harbored the most number (266) of mycorrhizal trees. Although habitat effect was not significant in influencing mycorrhizal colonization of tree species, some tree species did show aggregated patterns in particular habitats.展开更多
In eastern Asian subtropical forests,leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes.This shift has been largely explained by the greater capacity of deciduous broad-lea...In eastern Asian subtropical forests,leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes.This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions(e.g.,greater seasonality).The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest canopy trees than in forest understory shrubs.Furthermore,we hypothesize that in the forests of the subtropics,plants at higher latitudes,regardless of growth form,would better tolerate seasonal harsh climates,and hence show less differentiation in leaf habit shift,compared to those at lower latitudes.To test these two hypotheses,we modelled the proportion of deciduous broad-leaved species and the incidence of deciduous and evergreen broad-leaved species in woody angiosperm species compositions of ten largesized forest plots distributed in the Chinese subtropics.We found that the rate of leaf habit shift along a latitudinal gradient was higher in forest trees than in forest shrubs.We also found that the differentiation in leaf habit shift between trees and shrubs is greater at lower latitudes(i.e.,warmer climates)than at higher latitudes(i.e.,colder climates).These findings indicate that specialized forest plants are differentially affected by climate in distinct forest strata in a manner dependent on latitudinal distribution.These differences in forest plant response to changes in climate suggest that global climate warming will alter growth forms and geographical distributions and ranges of forests.展开更多
Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly,functional traits often act as the proxy of niches.However,there is little detailed knowledge regarding the correlat...Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly,functional traits often act as the proxy of niches.However,there is little detailed knowledge regarding the correlation between functional traits of tree species and their niches in local communities.We suggest that the co-varying correlation between functional traits and niches should be the premise for using phylogenetic and functional approaches to test mechanisms of community assembly.Using functional traits,phylogenetic and environmental data,this study aims to answer the questions:(i)within local communities,do functional traits of co-occurring species covary with their environmental niches at the species level?and(ii)what is the key ecological process underlying community assembly in Xishuangbanna and Ailaoshan forest dynamic plots(FDPs)?Methods We measured seven functional traits of 229 and 36 common species in Xishuangbanna and Ailaoshan FDPs in tropical and subtropical China,respectively.We also quantified the environmental niches for these species based on conditional probability.We then analyzed the correlations between functional traits and environmental niches using phylogenetic independent contrasts.After examining phylogenetic signals of functional traits using Pagel’sλ,we quantified the phylogenetic and functional dispersion along environmental gradients within local tree communities.Important Findings For target species,functional traits do co-vary with environmental niches at the species level in both of the FDPs,supporting that functional traits can be used as a proxy for local-scale environmental niches.Functional traits show significant phylogenetic signals in both of the FDPs.We found that the phylogenetic and functional dispersion were significantly clustered along topographical gradients in the Ailaoshan FDP but overdispersion in the Xishuangbanna FDP.These patterns of phylogenetic and functional dispersion suggest that environmental filtering plays a key role in structuring local tree assemblages in Ailaoshan FDP,while competition exclusion plays a key role in Xishuangbanna FDP.展开更多
Secondary forests, created after heavy logging,are an important part of China's forests. We investigated forest biomass and its accumulation rate in 38 plots in a tropical secondary forest on Hainan Island. These ...Secondary forests, created after heavy logging,are an important part of China's forests. We investigated forest biomass and its accumulation rate in 38 plots in a tropical secondary forest on Hainan Island. These secondary forests are moderate carbon sinks, averaging1.96–2.17 t C ha-1 a-1. Biomass increment is largely by medium-sized(10–35 m) trees. Tree mortality accounts for almost 30% of the biomass and plays a negligible role in biomass accumulation estimates. Mortality rate is highly dependent on tree size. For small trees and seedlings, it is related to competition due to elevated irradiance after logging. Regarding prospective biomass and rates of accumulation, recovery is not as rapid as in secondary forests of cleared land. Therefore, tropical forests are susceptible to logging operations and need careful forest management.展开更多
Stocking and structural composition of a deciduous broad-leaved forest were determined to predict coarse woody debris quantity by quantifying the empirical relationships between these two attributes.The most ecologica...Stocking and structural composition of a deciduous broad-leaved forest were determined to predict coarse woody debris quantity by quantifying the empirical relationships between these two attributes.The most ecologically significant families by stem density were Salicaceae,Betulaceae,Fagaceae,and Aceraceae.P opulus davidiana was the most dominant species followed by B etula dahurica,Quercus mongolica,and Acer mono.The four species accounted for 69.5%of total stems.Numerous small-diameter species characterized the coarse woody debris showing a reversed J-shaped distribution.The coarse debris of P.davidiana,B.dahurica,and Q.mongolica mainly comprised the 10–20 cm size class,whereas A.mono debris was mainly in the 5–10 cm size class.The spatial patterns of different size classes of coarse woody debris were analyzed using the g-function to determine the size of the tree at its death.The results indicate that the spatial patterns at the 0–50 m scale shifted gradually from an aggregated to a random pattern.For some species,the larger coarse debris might change from an aggregated to a random distribution more easily.Given the importance of coarse woody debris in forest ecosystems,its composition and patterns can improve understanding of community structure and dynamics.The aggregation pattern might be due to density dependence and self-thinning effects,as well as by succession and mortality.The four dominant species across the different size classes showed distinct aggregated distribution features at different spatial scales.This suggests a correlation between the dominant species population,size class,and aggregated distribution of coarse woody debris.展开更多
The composition of animal species and interactions among them are widely known to shape ecological communities and fine-scale(e.g.,<1 km)monitoring of animal communities is essential for understanding the relations...The composition of animal species and interactions among them are widely known to shape ecological communities and fine-scale(e.g.,<1 km)monitoring of animal communities is essential for understanding the relationships among animals and plants.Although the co-existence of large-and medium-sized species has been studied across different scales,research on fine-scale interactions of herbivores in deciduous broadleaf forests is limited.Camera trapping of large-and medium-sized mammals was carried out over a 1 year period within a 25 ha deciduous broadleaf forest dynamics plot in the Qinling Mountains,China.Fourteen species of large-and medium-sized mammals,including six carnivores,six ungulates,one primate and one rodent species were found.Kernel density estimations were used to analyse the diel or 24 h activity patterns of all species with more than 40 independent detections and general linear models were developed to explore the spatial relationships among the species.The combination of overlapping diel activity patterns and spatial associations showed obvious niche separation among six species:giant panda(Ailuropoda melanoleuca David),takin(Budorcas taxicolor Hodgson),Reeves’s muntjac(Muntiacus reevesi Ogilby),tufted deer(Elaphodus cephalophus Milne-Edwards),Chinese serow(Capricornis milneedwardsii David)and wild boar(Sus scrofa Linnaeus).Long-term fine-scale monitoring is useful for providing information about the co-existence of species and their interactions.The results demonstrate the importance for fine-scale monitoring of animals and plants for improving understanding of species interactions and community dynamics.展开更多
The spatial-temporal variation of understory light availability has important influences on species diversity and community assembly.However,the distribution characteristics and influencing factors of understory light...The spatial-temporal variation of understory light availability has important influences on species diversity and community assembly.However,the distribution characteristics and influencing factors of understory light availability have not been fully elucidated,especially in temperate deciduous,broad-leaved forests.In this study,the understory light availability was monitored monthly(May–October)in a temperate deciduous,broad-leaved forest in Henan Province,China.Differences in the light availability among different months and habitat types were statistically analyzed using Kruskal–Wallis method,respectively.Partial least squares path modeling(PLS-PM)was used to explore the direct and/or indirect effects of stand structure,dominant species and topographic factors on the light environment.Results showed that there were differences in light environments among the four habitat types and during the studied six months.The PLS-PM results showed that the stand structure and the dominant species were negatively correlated with the light environment,and the path coefficient values were−0.089(P=0.042)and−0.130(P=0.004),respectively.Our result indicated that the understory light availability exhibit a distinct spatial and temporal heterogeneity in temperate deciduous,broad-leaved forest of north China.The characteristics of woody plant community,especially the abundance of one of the dominant plant species,were the important factors affecting the understory light availability.展开更多
基金support of the U.S. National Science Foundation (awards 8206992, 8906869, 9405933, 9909947, 0948585 to S.P. Hubbell)the John D. and Catherine D. McArthur Foundation+1 种基金the Smithsonian Tropical Research Institutesupported by research grant #7738 from the Natural Sciences and Engineering Research Council of Canada (NSERC) to P. Legendre
文摘Background: Ecologists are interested in assessing the spatial and temporal variation in ecological surveys repeated over time. This paper compares the 1985 and 2015 surveys of the Barro Colorado Forest Dynamics plot(BCI), Panama,divided into 1250(20 m × 20 m) quadrats.Methods, spatial analysis: Total beta diversity was measured as the total variance of the Hellinger-transformed community data throughout the BCI plot. Total beta was partitioned into contributions of individual sites(LCBD indices), which were tested for significance and mapped.Results, spatial analysis: LCBD indices indicated the sites with exceptional community composition. In 1985,they were mostly found in the swamp habitat. In the 2015 survey, none of the swamp quadrats had significant LCBDs.What happened to the tree community in the interval?Methods, temporal analysis: The dissimilarity in community composition in each quadrat was measured between time 1(1985) and time 2(2015). Temporal Beta Indices(TBI) were computed from abundance and presence-absence data and tested for significance. TBI indices can be decomposed into B = species(or abundances-per-species) losses and C = species(or abundances-per-species) gains. B-C plots were produced; they display visually the relative importance of the loss and gain components, through time, across the sites.Results, temporal analysis: In BCI, quadrats with significant TBI indices were found in the swamp area, which is shrinking in importance due to changes to the local climate. A published habitat classification divided the BCI forest plot into six habitat zones. Graphs of the B and C components were produced for each habitat group. Group 4(the swamp) was dominated by species(and abundances-per-species) gains whereas the five other habitat groups were dominated by losses, some groups more than others.Conclusions: We identified the species that had changed the most in abundances in the swamp between T1 and T2.This analysis supported the hypothesis that the swamp is drying out and is invaded by species from the surrounding area. Analysis of the B and C components of temporal beta diversity bring us to the heart of the mechanisms of community change through time: losses(B) and gains(C) of species, losses and gains of individuals of various species. TBI analysis is especially interesting in species-rich communities where we cannot examine the changes in every species individually.
文摘A study was carried out in the 50-ha Korup Forest Dynamic Plot in South West Cameroon, to evaluate the diversity of mycorrhizal associations as well as to determine the effect of habitat types on the type of mycorrhizal association. A total of 781 individual trees belonging to 51 families, 165 genera and 252 tree species, were sampled from the four habitat types found in the plot: low drier, hill slope, ridge top and wetland complexes. In each habitat type, all stems ≤ 1 cm depth at breast height had already been tagged, measured, mapped and identified to the species level. Root samples were collected, cleared, stained and examined microscopically for mycorrhizal type. Of the total number of species sampled, 248 (98.41%) formed mycorrhizal associations with only 4 (1.59%) being non mycorrhizal. For mycorrhizal trees, 232 (93.55%) formed exclusively arbuscular mycorrhiza, 10 (4.03%) formed ectomycorrhiza, while 6 (2.42%) formed both ecto- and arbuscular mycorrhiza. The ridge top harbored the least number (152) of mycorrhizal trees while the low drier area harbored the most number (266) of mycorrhizal trees. Although habitat effect was not significant in influencing mycorrhizal colonization of tree species, some tree species did show aggregated patterns in particular habitats.
基金supported by the Natural Science and Technology Foundation of Guizhou Province[[2020]1Z013]the Joint Fund of the National Natural Science Foundation of Chinathe Karst Science Research Center of Guizhou Province[U1812401]。
文摘In eastern Asian subtropical forests,leaf habit shifts from evergreen to deciduous broad-leaved woody plants toward higher latitudes.This shift has been largely explained by the greater capacity of deciduous broad-leaved plants to respond to harsh climatic conditions(e.g.,greater seasonality).The advantages of deciduous leaf habit over evergreen leaf habit in more seasonal climates have led us to hypothesize that leaf habits would shift in response to climate changes more conspicuously in forest canopy trees than in forest understory shrubs.Furthermore,we hypothesize that in the forests of the subtropics,plants at higher latitudes,regardless of growth form,would better tolerate seasonal harsh climates,and hence show less differentiation in leaf habit shift,compared to those at lower latitudes.To test these two hypotheses,we modelled the proportion of deciduous broad-leaved species and the incidence of deciduous and evergreen broad-leaved species in woody angiosperm species compositions of ten largesized forest plots distributed in the Chinese subtropics.We found that the rate of leaf habit shift along a latitudinal gradient was higher in forest trees than in forest shrubs.We also found that the differentiation in leaf habit shift between trees and shrubs is greater at lower latitudes(i.e.,warmer climates)than at higher latitudes(i.e.,colder climates).These findings indicate that specialized forest plants are differentially affected by climate in distinct forest strata in a manner dependent on latitudinal distribution.These differences in forest plant response to changes in climate suggest that global climate warming will alter growth forms and geographical distributions and ranges of forests.
基金National Natural Science Foundation of China(31000201,31370445,31061160188)National Key Basic Research Program of China(2014CB954104)the West Light Foundation of Chinese Academy of Sciences and the Special Program for Basic Research of the Ministry of Science and Technology of China(2012FY10400,2011FY120200).
文摘Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly,functional traits often act as the proxy of niches.However,there is little detailed knowledge regarding the correlation between functional traits of tree species and their niches in local communities.We suggest that the co-varying correlation between functional traits and niches should be the premise for using phylogenetic and functional approaches to test mechanisms of community assembly.Using functional traits,phylogenetic and environmental data,this study aims to answer the questions:(i)within local communities,do functional traits of co-occurring species covary with their environmental niches at the species level?and(ii)what is the key ecological process underlying community assembly in Xishuangbanna and Ailaoshan forest dynamic plots(FDPs)?Methods We measured seven functional traits of 229 and 36 common species in Xishuangbanna and Ailaoshan FDPs in tropical and subtropical China,respectively.We also quantified the environmental niches for these species based on conditional probability.We then analyzed the correlations between functional traits and environmental niches using phylogenetic independent contrasts.After examining phylogenetic signals of functional traits using Pagel’sλ,we quantified the phylogenetic and functional dispersion along environmental gradients within local tree communities.Important Findings For target species,functional traits do co-vary with environmental niches at the species level in both of the FDPs,supporting that functional traits can be used as a proxy for local-scale environmental niches.Functional traits show significant phylogenetic signals in both of the FDPs.We found that the phylogenetic and functional dispersion were significantly clustered along topographical gradients in the Ailaoshan FDP but overdispersion in the Xishuangbanna FDP.These patterns of phylogenetic and functional dispersion suggest that environmental filtering plays a key role in structuring local tree assemblages in Ailaoshan FDP,while competition exclusion plays a key role in Xishuangbanna FDP.
基金supported by The C-project Excellent Talent Project of Hainan Universitythe National Natural Science Foundation of China(Grant No.31200347)
文摘Secondary forests, created after heavy logging,are an important part of China's forests. We investigated forest biomass and its accumulation rate in 38 plots in a tropical secondary forest on Hainan Island. These secondary forests are moderate carbon sinks, averaging1.96–2.17 t C ha-1 a-1. Biomass increment is largely by medium-sized(10–35 m) trees. Tree mortality accounts for almost 30% of the biomass and plays a negligible role in biomass accumulation estimates. Mortality rate is highly dependent on tree size. For small trees and seedlings, it is related to competition due to elevated irradiance after logging. Regarding prospective biomass and rates of accumulation, recovery is not as rapid as in secondary forests of cleared land. Therefore, tropical forests are susceptible to logging operations and need careful forest management.
基金supported by The National Science Foundation of China(31770567,31570630)。
文摘Stocking and structural composition of a deciduous broad-leaved forest were determined to predict coarse woody debris quantity by quantifying the empirical relationships between these two attributes.The most ecologically significant families by stem density were Salicaceae,Betulaceae,Fagaceae,and Aceraceae.P opulus davidiana was the most dominant species followed by B etula dahurica,Quercus mongolica,and Acer mono.The four species accounted for 69.5%of total stems.Numerous small-diameter species characterized the coarse woody debris showing a reversed J-shaped distribution.The coarse debris of P.davidiana,B.dahurica,and Q.mongolica mainly comprised the 10–20 cm size class,whereas A.mono debris was mainly in the 5–10 cm size class.The spatial patterns of different size classes of coarse woody debris were analyzed using the g-function to determine the size of the tree at its death.The results indicate that the spatial patterns at the 0–50 m scale shifted gradually from an aggregated to a random pattern.For some species,the larger coarse debris might change from an aggregated to a random distribution more easily.Given the importance of coarse woody debris in forest ecosystems,its composition and patterns can improve understanding of community structure and dynamics.The aggregation pattern might be due to density dependence and self-thinning effects,as well as by succession and mortality.The four dominant species across the different size classes showed distinct aggregated distribution features at different spatial scales.This suggests a correlation between the dominant species population,size class,and aggregated distribution of coarse woody debris.
基金This work was supported by the National Natural Science Foundation of China project(No 41671183).
文摘The composition of animal species and interactions among them are widely known to shape ecological communities and fine-scale(e.g.,<1 km)monitoring of animal communities is essential for understanding the relationships among animals and plants.Although the co-existence of large-and medium-sized species has been studied across different scales,research on fine-scale interactions of herbivores in deciduous broadleaf forests is limited.Camera trapping of large-and medium-sized mammals was carried out over a 1 year period within a 25 ha deciduous broadleaf forest dynamics plot in the Qinling Mountains,China.Fourteen species of large-and medium-sized mammals,including six carnivores,six ungulates,one primate and one rodent species were found.Kernel density estimations were used to analyse the diel or 24 h activity patterns of all species with more than 40 independent detections and general linear models were developed to explore the spatial relationships among the species.The combination of overlapping diel activity patterns and spatial associations showed obvious niche separation among six species:giant panda(Ailuropoda melanoleuca David),takin(Budorcas taxicolor Hodgson),Reeves’s muntjac(Muntiacus reevesi Ogilby),tufted deer(Elaphodus cephalophus Milne-Edwards),Chinese serow(Capricornis milneedwardsii David)and wild boar(Sus scrofa Linnaeus).Long-term fine-scale monitoring is useful for providing information about the co-existence of species and their interactions.The results demonstrate the importance for fine-scale monitoring of animals and plants for improving understanding of species interactions and community dynamics.
基金This work a contribution to Youth Foundation of Natural Science Foundation of Henan Province(212300410153)The Young Talents Promotion Project of Henan Province(2020HYTP037)+1 种基金Science and Technology Project of Henan Provincial Department of Natural Resources(No.2021-178-9)Basic scientific research expenses of Henan Province(2021JB02014).
文摘The spatial-temporal variation of understory light availability has important influences on species diversity and community assembly.However,the distribution characteristics and influencing factors of understory light availability have not been fully elucidated,especially in temperate deciduous,broad-leaved forests.In this study,the understory light availability was monitored monthly(May–October)in a temperate deciduous,broad-leaved forest in Henan Province,China.Differences in the light availability among different months and habitat types were statistically analyzed using Kruskal–Wallis method,respectively.Partial least squares path modeling(PLS-PM)was used to explore the direct and/or indirect effects of stand structure,dominant species and topographic factors on the light environment.Results showed that there were differences in light environments among the four habitat types and during the studied six months.The PLS-PM results showed that the stand structure and the dominant species were negatively correlated with the light environment,and the path coefficient values were−0.089(P=0.042)and−0.130(P=0.004),respectively.Our result indicated that the understory light availability exhibit a distinct spatial and temporal heterogeneity in temperate deciduous,broad-leaved forest of north China.The characteristics of woody plant community,especially the abundance of one of the dominant plant species,were the important factors affecting the understory light availability.