期刊文献+
共找到3,542篇文章
< 1 2 178 >
每页显示 20 50 100
Hydrocarbon accumulation in deep ancient carbonate-evaporite assemblages 被引量:3
1
作者 SHI Shuyuan HU Suyun +10 位作者 LIU Wei WANG Tongshan ZHOU Gang XU Anna HUANG Qingyu XU Zhaohui HAO Bin WANG Kun JIANG Hua MA Kui BAI Zhuangzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期54-68,共15页
The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within t... The Ediacaran–Ordovician strata within three major marine basins(Tarim,Sichuan,and Ordos)in China are analyzed.Based on previous studies focusing on the characteristics of the Neoproterozoic–Cambrian strata within the three major basins(East Siberian,Oman,and Officer in Australia)overseas,the carbonate–evaporite assemblages in the target interval are divided into three types:intercalated carbonate and gypsum salt,interbedded carbonate and gypsum salt,and coexisted carbonate,gypsum salt and clastic rock.Moreover,the concept and definition of the carbonate-evaporite assemblage are clarified.The results indicate that the oil and gas in the carbonate-evaporite assemblage are originated from two types of source rocks:shale and argillaceous carbonate,and confirmed the capability of gypsum salt in the saline environment to drive the source rock hydrocarbon generation.The dolomite reservoirs are classified in two types:gypseous dolomite flat,and grain shoal&microbial mound.This study clarifies that the penecontemporaneous or epigenic leaching of atmospheric fresh water mainly controlled the large-scale development of reservoirs.Afterwards,burial dissolution transformed and reworked the reservoirs.The hydrocarbon accumulation in carbonate-evaporite assemblage can be categorized into eight sub-models under three models(sub-evaporite hydrocarbon accumulation,supra-evaporite hydrocarbon accumulation,and inter-evaporite hydrocarbon accumulation).As a result,the Cambrian strata in the Tazhong Uplift North Slope,Maigaiti Slope and Mazatag Front Uplift Zone of the Tarim Basin,the Cambrian strata in the eastern-southern area of the Sichuan Basin,and the inter-evaporite Ma-4 Member of Ordovician in the Ordos Basin,China,are defined as favorable targets for future exploration. 展开更多
关键词 carbonate-evaporite assemblage dolomite reservoir source rock hydrocarbon accumulation Sichuan Basin Tarim Basin Ordos Basin
下载PDF
Hydrocarbon accumulation and orderly distribution of whole petroleum system in marine carbonate rocks of Sichuan Basin,SW China 被引量:1
2
作者 GUO Xusheng HUANG Renchun +3 位作者 ZHANG Dianwei LI Shuangjian SHEN Baojian LIU Tianjia 《Petroleum Exploration and Development》 SCIE 2024年第4期852-869,共18页
Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbo... Based on the situation and progress of marine oil/gas exploration in the Sichuan Basin,SW China,the whole petroleum system is divided for marine carbonate rocks of the basin according to the combinations of hydrocarbon accumulation elements,especially the source rock.The hydrocarbon accumulation characteristics of each whole petroleum system are analyzed,the patterns of integrated conventional and unconventional hydrocarbon accumulation are summarized,and the favorable exploration targets are proposed.Under the control of multiple extensional-convergent tectonic cycles,the marine carbonate rocks of the Sichuan Basin contain three sets of regional source rocks and three sets of regional cap rocks,and can be divided into the Cambrian,Silurian and Permian whole petroleum systems.These whole petroleum systems present mainly independent hydrocarbon accumulation,containing natural gas of affinity individually.Locally,large fault zones run through multiple whole petroleum systems,forming a fault-controlled complex whole petroleum system.The hydrocarbon accumulation sequence of continental shelf facies shale gas accumulation,marginal platform facies-controlled gas reservoirs,and intra-platform fault-and facies-controlled gas reservoirs is common in the whole petroleum system,with a stereoscopic accumulation and orderly distribution pattern.High-quality source rock is fundamental to the formation of large gas fields,and natural gas in a whole petroleum system is generally enriched near and within the source rocks.The development and maintenance of large-scale reservoirs are essential for natural gas enrichment,multiple sources,oil and gas transformation,and dynamic adjustment are the characteristics of marine petroleum accumulation,and good preservation conditions are critical to natural gas accumulation.Large-scale marginal-platform reef-bank facies zones,deep shale gas,and large-scale lithological complexes related to source-connected faults are future marine hydrocarbon exploration targets in the Sichuan Basin. 展开更多
关键词 Sichuan Basin margin oil/gas whole petroleum system carbonate hydrocarbon accumulation hydrocarbon distribution law hydrocarbon exploration target
下载PDF
Differences in hydrocarbon accumulation and controlling factors of slope belt in graben basin: A case study of Pinghu Slope Belt in the Xihu sag of the east China Sea Shelf basin(ECSSB)
3
作者 Bo Yan Hong-Qi Yuan +5 位作者 Ning Li Wei Zou Peng Sun Meng Li Yue-Yun Zhao Qian Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期2901-2926,共26页
The Pinghu slope belt in the Xihu sag of the East China Sea Shelf Basin(ECSSB) is a crucial hydrocarbon production area in eastern China. However, due to the complex geological conditions, publications have lacked com... The Pinghu slope belt in the Xihu sag of the East China Sea Shelf Basin(ECSSB) is a crucial hydrocarbon production area in eastern China. However, due to the complex geological conditions, publications have lacked comprehensive research on the spatial-temporal coupling relationships of primary factors that impact hydrocarbon accumulation in the Pinghu slope belt. Furthermore, the hydrocarbon distribution patterns and the controlling factors across different study areas within the same slope belt are not yet fully understood. This study extensively utilized three-dimensional seismic data, well logging data,geochemical analysis, fluorescence analysis, and oil testing and production data to address these issues.Following a “stratification and differentiation” approach, the study identified seven distinct hydrocarbon migration and accumulation units(HMAU) in the Pinghu slope area based on the structural morphology characteristics, hydrocarbon source-reservoir-cap rock patterns, hydrocarbon migration pathways, and hydrocarbon supply range. Detailed analysis was conducted to examine the hydrocarbon distribution patterns and controlling factors within each migration and accumulation unit across different structural units, including high, medium, and low structural components. All data sources support a “southern-northern sub-area division, eastern-western sub-belt division, and variations in hydrocarbon accumulation” pattern in the Pinghu slope belt. The degree of hydrocarbon accumulation is controlled by the factors of structural morphology, hydrocarbon generation potential of source rocks, the spatial position of source slopes, fault sealing capacity, and sand body distribution. Furthermore, different coupling patterns of faults and sand bodies play a pivotal role in governing hydrocarbon enrichment systems across various migration and accumulation units. These observations indicate that three hydrocarbon accumulation patterns have been established within the slope belt, including near-source to far-source gentle slope with multiple hydrocarbon kitchens in the XP1-XP4 zones, near-source to middle-source gentle slope with dual-hydrocarbon kitchens in the XP5 zone, and near-source steep slope with a single hydrocarbon kitchen in the XP6-XP7 zones. These findings contribute to enhancing the theoretical system of hydrocarbon accumulation in the slope belt. 展开更多
关键词 East China Sea Shelf Basin(ECSSB) Pinghu slope belt Variation in hydrocarbon accumulation Controlling factors of hydrocarbon accumulation hydrocarbon accumulation pattern
下载PDF
Hydrocarbon accumulation history in Lower Cretaceous in northern slope of Bongor Basin in Chad,Central Africa
4
作者 WANG Li NIE Zhiquan +5 位作者 DU Yebo WANG Lin MENG Fanchao CHEN Yuliu HU Jie DING Ruxin 《Petroleum Exploration and Development》 SCIE 2024年第1期141-151,共11页
Based on the analysis of the fluid inclusion homogenization temperature and apatite fission track on the northern slope zone of the Bongor Basin in Chad,this paper studied the time and stages of hydrocarbon accumulati... Based on the analysis of the fluid inclusion homogenization temperature and apatite fission track on the northern slope zone of the Bongor Basin in Chad,this paper studied the time and stages of hydrocarbon accumulation in the study area.The results show that:(1)The brine inclusions of the samples from the Kubla and Prosopis formations in the Lower Cretaceous coexisting with the hydrocarbon generally present two sets of peak ranges of homogenization temperature,with the peak ranges of low temperature and high temperature being 75–105℃ and 115–135℃,respectively;(2)The samples from the Kubla and Prosopis formations have experienced five tectonic evolution stages,i.e.,rapid subsidence in the Early Cretaceous,tectonic inversion in the Late Cretaceous,small subsidence in the Paleogene,uplift at the turn of the Paleogene and Neogene,and subsidence since the Miocene,in which the denudation thickness of the Late Cretaceous and after the turn of the Paleogene and Neogene are~1.8 km and~0.5 km,respectively.The cumulative denudation thickness of the two periods is about 2.3 km;(3)Using the brine inclusion homogenization temperature coexisting with the hydrocarbon as the capture temperature of the hydrocarbon,and combining with the apatite fission track thermal history modeling,the result shows that the Kubla and Prosopis formations in the Lower Cretaceous on the northern slope of the Bongor Basin have the same hydrocarbon accumulation time and stages,both of which have undergone two stages of hydrocarbon charging at 80–95 Ma and 65–80 Ma.The first stage of charging corresponds to the initial migration of hydrocarbon at the end of the Early Cretaceous rapid sedimentation,while the second stage of charging is in the stage of intense tectonic inversion in the Late Cretaceous. 展开更多
关键词 Central Africa CHAD Bongor Basin Lower Cretaceous hydrocarbon accumulation stages fluid inclusions apatite fission track
下载PDF
Characteristics and hydrocarbon accumulation model of Paleogene whole petroleum system in western depression of Qaidam Basin,NW China
5
作者 LIU Guoyong WU Songtao +6 位作者 WU Kunyu SHEN Yue LEI Gang ZHANG Bin XING Haoting ZHANG Qinghui LI Guoxin 《Petroleum Exploration and Development》 SCIE 2024年第5期1097-1108,共12页
Based on the oil and gas exploration in western depression of the Qaidam Basin,NW China,combined with the geochemical,seismic,logging and drilling data,the basic geological conditions,oil and gas distribution characte... Based on the oil and gas exploration in western depression of the Qaidam Basin,NW China,combined with the geochemical,seismic,logging and drilling data,the basic geological conditions,oil and gas distribution characteristics,reservoir-forming dynamics,and hydrocarbon accumulation model of the Paleogene whole petroleum system(WPS)in the western depression of the Qaidam Basin are systematically studied.A globally unique ultra-thick mountain-style WPS is found in the western depression of the Qaidam Basin.Around the source rocks of the upper member of the Paleogene Lower Ganchaigou Formation,the structural reservoir,lithological reservoir,shale oil and shale gas are laterally distributed in an orderly manner and vertically overlapped from the edge to the central part of the lake basin.The Paleogene WPS in the western depression of the Qaidam Basin is believed unique in three aspects.First,the source rocks with low organic matter abundance are characterized by low carbon and rich hydrogen,showing a strong hydrocarbon generating capacity per unit mass of organic carbon.Second,the saline lake basinal deposits are ultra-thick,with mixed deposits dominating the center of the depression,and strong vertical and lateral heterogeneity of lithofacies and storage spaces.Third,the strong transformation induced by strike-slip compression during the Himalayan resulted in the heterogeneous enrichment of oil and gas in the mountain-style WPS.As a result of the coordinated evolution of source-reservoir-caprock assemblage and conducting system,the Paleogene WPS has the characteristics of“whole process”hydrocarbon generation of source rocks which are low-carbon and hydrogen-rich,“whole depression”ultra-thick reservoir sedimentation,“all direction”hydrocarbon adjustment by strike-slip compressional fault,and“whole succession”distribution of conventional and unconventional oil and gas.Due to the severe Himalayan tectonic movement,the western depression of the Qaidam Basin evolved from depression to uplift.Shale oil is widely distributed in the central lacustrine basin.In the sedimentary system thicker than 2000 m,oil and gas are continuous in the laminated limy-dolomites within the source rocks and the alga limestones neighboring the source kitchen,with intercrystalline pores,lamina fractures in dolomites and fault-dissolution bodies serving as the effective storage space.All these findings are helpful to supplement and expand the WPS theory in the continental lake basins in China,and provide theoretical guidance and technical support for oil and gas exploration in the Qaidam Basin. 展开更多
关键词 whole petroleum system shale oil Yingxiongling sag ultra-thick mountain-style continuous hydrocarbon accumulation PALEOGENE western depression of Qaidam Basin
下载PDF
Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates
6
作者 MA Yongsheng CAI Xunyu +9 位作者 LI Maowen LI Huili ZHU Dongya QIU Nansheng PANG Xiongqi ZENG Daqian KANG Zhijiang MA Anlai SHI Kaibo ZHANG Juntao 《Petroleum Exploration and Development》 SCIE 2024年第4期795-812,共18页
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d... Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved. 展开更多
关键词 deep and ultra-deep marine carbonate mechanisms of hydrocarbon accumulation reef-beach facies high-sulfur sour gas reservoirs ultra-deep fault-controlled fractured-cavity reservoir wellbore sulfur deposition fluid-solid-thermal numerical simulation
下载PDF
Large-scale gas accumulation mechanisms and reservoir-forming geological effects in sandstones of Central and Western China 被引量:1
7
作者 LI Wei WANG Xueke +3 位作者 ZHANG Benjian CHEN Zhuxin PEI Senqi YU Zhichao 《Petroleum Exploration and Development》 2020年第4期714-725,共12页
Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat... Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation. 展开更多
关键词 Central and Western China basins large-scale natural gas accumulation mechanism structural pumping effect mudstone water absorption effect water-soluble gas degasification effect fluid sequestration effect natural gas reservoir formation
下载PDF
Dynamic Field Division of Hydrocarbon Migration,Accumulation and Hydrocarbon Enrichment Rules in Sedimentary Basins 被引量:14
8
作者 PANG Xiongqi LIU Keyu +5 位作者 MA Zhongzhen JIANG Zhenxue XIANG Caifu HUO Zhipeng PANG Hong CHEN Junqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第6期1559-1592,共34页
Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much... Hydrocarbon distribution rules in the deep and shallow parts of sedimentary basins are considerably different, particularly in the following four aspects. First, the critical porosity for hydrocarbon migration is much lower in the deep parts of basins: at a depth of 7000 m, hydrocarbons can accumulate only in rocks with porosity less than 5%. However, in the shallow parts of basins (i.e., depths of around 1000 m), hydrocarbon can accumulate in rocks only when porosity is over 20%. Second, hydrocarbon reservoirs tend to exhibit negative pressures after hydrocarbon accumulation at depth, with a pressure coefficient less than 0.7. However, hydrocarbon reservoirs at shallow depths tend to exhibit high pressure after hydrocarbon accumulation. Third, deep reservoirs tend to exhibit characteristics of oil (-gas)-water inversion, indicating that the oil (gas) accumulated under the water. However, the oil (gas) tends to accumulate over water in shallow reservoirs. Fourth, continuous unconventional tight hydrocarbon reservoirs are distributed widely in deep reservoirs, where the buoyancy force is not the primary dynamic force and the caprock is not involved during the process of hydrocarbon accumulation. Conversely, the majority of hydrocarbons in shallow regions accumulate in traps with complex structures. The results of this study indicate that two dynamic boundary conditions are primarily responsible for the above phenomena: a lower limit to the buoyancy force and the lower limit of hydrocarbon accumulation overall, corresponding to about 10%-12% porosity and irreducible water saturation of 100%, respectively. These two dynamic boundary conditions were used to divide sedimentary basins into three different dynamic fields of hydrocarbon accumulation: the free fluid dynamic field, limit fluid dynamic field, and restrain fluid dynamic field. The free fluid dynamic field is located between the surface and the lower limit of the buoyancy force, such that hydrocarbons in this field migrate and accumulate under the influence of, for example, the buoyancy force, pressure, hydrodynamic force, and capillary force. The hydrocarbon reservoirs formed are characterized as "four high," indicating that they accumulate in high structures, are sealed in high locations, migrate into areas of high porosity, and are stored in reservoirs at high pressure. The basic features of distribution and accumulation in this case include hydrocarbon migration as a result of the buoyancy force and formation of a reservoir by a caprock. The limit fluid dynamic field is located between the lower limit of the buoyancy force and the lower limit of hydrocarbon accumulation overall; the hydrocarbon migrates and accumulates as a result of, for example, the molecular expansion force and the capillary force. The hydrocarbon reservoirs formed are characterized as "four low," indicating that hydrocarbons accumulate in low structures, migrate into areas of low porosity, and accumulate in reservoirs with low pressure, and that oil(-gas)-water inversion occurs at low locations. Continuous hydrocarbon accumulation over a large area is a basic feature of this field. The restrain fluid dynamic field is located under the bottom of hydrocarbon accumulation, such that the entire pore space is filled with water. Hydrocarbons migrate as a result of the molecular diffusion force only. This field lacks many of the basic conditions required for formation of hydrocarbon reservoirs: there is no effective porosity, movable fluid, or hydrocarbon accumulation, and potential for hydrocarbon exploration is low. Many conventional hydrocarbon resources have been discovered and exploited in the free fluid dynamic field of shallow reservoirs, where exploration potential was previously considered to be low. Continuous unconventional tight hydrocarbon resources have been discovered in the limit fluid dynamic field of deep reservoirs; the exploration potential of this setting is thought to be tremendous, indicating that future exploration should be focused primarily in this direction. 展开更多
关键词 petroliferous basins dynamic force of hydrocarbon accumulation dynamic fields ofhydrocarbon accumulation hydrocarbon accumulation mechanism hydrocarbon distribution rule
下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:35
9
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin Deep petroleum geology features hydrocarbon accumulation Petroleum exploration Petroleum resources
下载PDF
A hydrocarbon enrichment model and prediction of favorable accumulation areas in complicated superimposed basins in China 被引量:16
10
作者 Pang Xiongqi Meng Qingyang +2 位作者 Jiang Zhenxue Liu Luofu Lu Xiuxiang 《Petroleum Science》 SCIE CAS CSCD 2010年第1期10-19,共10页
The geologic conditions of superimposed basins in China are very complicated. This is mainly shown by multi-phase structural evolution, multiple sets of source-reservoir-cap rock combinations, multiple stages of hydro... The geologic conditions of superimposed basins in China are very complicated. This is mainly shown by multi-phase structural evolution, multiple sets of source-reservoir-cap rock combinations, multiple stages of hydrocarbon generation and expulsion from source rocks, multi-cycle hydrocarbon enrichment and accumulation, and multi-phase reservoir adjustment and reconstruction. The enrichment, accumulation and distribution of hydrocarbon is mainly controlled by the source rock kitchen, paleo- anticline, regional cap rock and intensity of tectonic movement. In this paper, the T-BCMS model has been developed to predict favorable areas of hydrocarbon accumulation in complicated superimposed basins according to time and spatial relationships among five key factors. The five factors include unconformity surface representing tectonic balancing (B), regional cap rock representing hydrocarbon protection (C), paleo-anticline representing hydrocarbon migration and accumulation (M), source rock kitchen representing hydrocarbon generation and expulsion (S) and geological time (T). There are three necessary conditions to form favorable areas of hydrocarbon accumulation. First, four key factors BCMS should be strictly in the order of BCMS from top to bottom. Second, superimposition of four key factors BCMS in the same area is the most favorable for hydrocarbon accumulation. Third, vertically ordered combination and superimposition in the same area of BCMS should occur at the same geological time. The model has been used to predict the most favorable exploration areas in Ordovician in the Tarim Basin in the main hydrocarbon accumulation periods. The result shows that 95% of the discovered Ordovician hydrocarbon reservoirs are located in the predicted areas, which indicates the feasibility and reliability of the key factor matching T-BCMS model for hydrocarbon accumulation and enrichment. 展开更多
关键词 Complicated superimposed basin key factor matching T-BCMS model favorable area for hydrocarbon accumulation hydrocarbon distribution prediction
下载PDF
Hydrocarbon Accumulation Conditions of Ordovician Carbonate in Tarim Basin 被引量:10
11
作者 LI Qiming WU Guanghui +5 位作者 PANG Xiongqi PAN Wenqin LUO Chunshu WANG Chenglin LI Xinsheng ZHOU Bo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1180-1194,共15页
Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ord... Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration. 展开更多
关键词 CARBONATE RESERVOIR hydrocarbon accumulation ORDOVICIAN Tarim Basin
下载PDF
The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation 被引量:11
12
作者 Li Yalin Wang Chengshan +3 位作者 Li Yongtie Ma Chao Wang Licheng Peng Shaonan 《Petroleum Science》 SCIE CAS CSCD 2010年第4期466-471,共6页
The tectonic event during Cretaceous and its relationship with hydrocarbon accumulation in the Qiangtang Basin is discussed based on zircon U-Pb dating and the study of deformation, thermochronology and hydrocarbon fo... The tectonic event during Cretaceous and its relationship with hydrocarbon accumulation in the Qiangtang Basin is discussed based on zircon U-Pb dating and the study of deformation, thermochronology and hydrocarbon formation. LA-ICPMS zircon U-Pb dating indicates that the tectonic event took place during the Early-Late Cretaceous (125-75Ma). The event not only established the framework and the styles of structural traps in the basin, but also led to the cessation of the first hydrocarbon formation and the destruction of previous oil pools. The light crude oil in the basin was formed during the second hydrocarbon formation stage in the Cenozoic, and ancient structural traps formed during the Cretaceous event are promising targets for oil and gas exploration. 展开更多
关键词 Qinghai-Tibet plateau Qiangtang Basin tectonic event CRETACEOUS hydrocarbon accumulation
下载PDF
Main progress and problems in research on Ordovician hydrocarbon accumulation in the Tarim Basin 被引量:9
13
作者 Pang Xiongqi Tian Jun +3 位作者 Pang Hong Xiang Caifu Jiang Zhenxue Li Sumei 《Petroleum Science》 SCIE CAS CSCD 2010年第2期147-163,共17页
The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in explorati... The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in exploration of Ordovician. In over 50 years of exploration, oil and gas totaling over 1.6 billion tonnes oil-equivalent has been discovered in the Ordovician carbonate formation. The accumulation mechanisms and distribution rules are quite complicated because of the burial depth more than 3,500 m, multi-source, and multi-stage accumulation, adjustment, reconstruction and re-enrichment in Ordovician. In this paper, we summarized four major advances in the hydrocarbon accumulation mechanisms of Ordovician carbonate reservoirs. First, oil came from Cambrian and Ordovician source rocks separately and as a mixture, while natural gas was mainly cracked gas generated from the Cambrian-Lower Ordovician crude oil. Second, most hydrocarbon migrated along unconformities and faults, with different directions in different regions. Third, hydrocarbon migration and accumulation had four periods: Caledonian, early Hercynian, late Hercynian and Himalayan, and the latter two were the most important for oil and gas exploration. Fourth, hydrocarbon accumulation and evolution can be generally divided into four stages: Caledonian (the period of hydrocarbon accumulation), early Hercynian (the period of destruction), late Hercynian (the period of hydrocarbon reconstruction and re-accumulation), and Himalayan (the period of hydrocarbon adjustment and re-accumulation). Source rocks (S), combinations of reservoir-seal (C), paleo-uplifts (M), structure balance belt (B) matched in the same time (T) control the hydrocarbon accumulation and distribution in the Ordovician formations. Reservoir adjustment and reconstruction can be classified into two modes of physical adjustment and variation of chemical compositions and five mechanisms. These mechanisms are occurrence displacement, biodegradation, multi-source mixing, high-temperature cracking and late gas invasion. Late hydrocarbon accumulation effects controlled the distribution of current hydrocarbon. The T-BCMS model is a basic geological model to help understanding the control of reservoirs. At present, the main problems of hydrocarbon accumulation focus on two aspects, dynamic mechanisms of hydrocarbon accumulation and the quantitative models of oil-bearing in traps, which need further systemic research. 展开更多
关键词 Tarim Basin carbonate reservoirs oil and gas exploration of the Ordovician hydrocarbon accumulation mechanism hydrocarbon enrichment rule
下载PDF
Buoyance-driven hydrocarbon accumulation depth and its implication for unconventional resource prediction 被引量:25
14
作者 Xiongqi Pang Chengzao Jia +6 位作者 Wenyang Wang Zhangxin Chen Maowen Li Fujie Jiang Tao Hu Ke Wang Yingxun Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第4期93-109,共17页
The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconve... The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconventional oil production in the USA accounted for 41%of the total oil production;and unconventional natural gas production in China accounted for 35%of total gas production,showing strong growth momentum of unconventional hydrocarbons explorations.Unconventional hydrocarbons generally coexist with conventional petroleum resources;they sometimes distribute in a separate system,not coexisting with a conventional system.Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists.This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features.Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance.Wepropose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance;beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation.We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials.Hydrocarbon migration and accumulations above this depth is dominated by buoyancy,forming conventional reservoirs in traps with high porosity and permeability,while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces(mainly refers to capillary force,hydrocarbon volumeexpansion force,etc.),forming unconventional reservoirs in tight layers.The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200mto 4200 m,which become shallowerwith increasing geothermal gradient,decreasing particle size of sandstone reservoir layers,or an uplift in the whole petroliferous basin.The predicted unconventional resource potential belowthe buoyance-driven hydrocarbon accumulation depth in six basins in China is more than 15.71×10^(9) t oil equivalent,among them 4.71×10^(9) t reserves have been proved.Worldwide,94%of 52,926 oil and gas reservoirs in 1186 basins are conventional reservoirs and only 6%of them are unconventional reservoirs.These 94%conventional reservoirs show promising exploration prospects in the deep area below buoyance-driven hydrocarbon accumulation depth. 展开更多
关键词 Nature energy Fossil energy Oil and gas resources Conventional hydrocarbon reservoirs Unconventional hydrocarbon reservoirs Buoyance-driven hydrocarbon accumulation DEPTH
下载PDF
Hydrocarbon migration and accumulation along the fault intersection zone-a case study on the reef-flat systems of the No.1 slope break zone in the Tazhong area, Tarim Basin 被引量:14
15
作者 Xiang Caifu Pang Xiongqi +4 位作者 Yang Wenjing Wang Jianzhong LiQiming Liu Luofu Li Yanqun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期211-225,共15页
Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest Chin... Understanding hydrocarbon migration and accumulation mechanisms is one of the key scientif ic problems that should be solved for effective hydrocarbon exploration in the superimposed basins developed in northwest China. The northwest striking No.1 slope break zone, which is a representative of superimposed basins in the Tarim Basin, can be divided into five parts due to the intersection of the northeast strike-slip faults. Controlled by the tectonic framework, the types and properties of reservoirs and the hydrocarbon compositions can also be divided into five parts from east to west. Anomalies of all the parameters were found on the fault intersection zone and weakened up-dip along the structural ridge away from it. Thus, it can be inferred that the intersection zone is the hydrocarbon charging position. This new conclusion differs greatly from the traditional viewpoint, which believes that the hydrocarbon migrates and accumulates along the whole plane of the No.1 slope break zone. The viewpoint is further supported by the evidence from the theory of main pathway systems, obvious improvement of the reservoir quality (2-3 orders of magnitude at the intersection zone) and the formation mechanisms of the fault intersection zone. Differential hydrocarbon migration and entrapment exists in and around the strike- slip faults. This is controlled by the internal structure of faults. It is concluded that the more complicated the fault structure is, the more significant the effects will be. If there is a deformation band, it will hinder the cross fault migration due to the common feature of two to four orders of magnitude reduction in permeability. Otherwise, hydrocarbons tend to accumulate in the up-dip structure under the control of buoyancy. Further research on the internal fault structure should be emphasized. 展开更多
关键词 Geologic chromatographic effect fault intersection zone differential hydrocarbon migration and accumulation superimposed basin Tazhong area Tarim Basin
下载PDF
Application of an analytic hierarchy process to hydrocarbon accumulation coefficient estimation 被引量:5
16
作者 Gao Yongjin Liu Lifeng +4 位作者 Liu Huimin Zheng Feifei Wu Li Zhou Jingjing Qu Dongfang 《Petroleum Science》 SCIE CAS CSCD 2010年第3期337-346,共10页
The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation cred... The hydrocarbon accumulation coefficient is a key parameter in resources evaluation by genetic techniques. Methods of obtaining its value scientifically have always been an important factor influencing evaluation credibility. In this paper, the hydrocarbon accumulation system is evaluated quantitatively by establishing a hierarchy structure model based on an analytical hierarchy process. The hydrocarbon accumulation system of a higher exploration degree is selected as a calibration area and its hydrocarbon accumulation coefficient can be calculated using methods of hydrocarbon generation potential and reservoir-scale sequence. The hydrocarbon accumulation coefficient of a petroleum accumulation system can be gained by analogy of reservoir forming comprehensive evaluation results with the calibration area. The hydrocarbon accumulation coefficient of each petroleum accumulation system in the upper reservoir-forming combination of the Liaohe Western Sag can be obtained with this method. Practice shows that using the analytical hierarchy process to quantitatively evaluate the hydrocarbon accumulation system and then quantitatively predict the hydrocarbon accumulation coefficient decreases the influence of human factors in resources evaluation, and makes the resources assessment more objective and closer to the actual geological condition. 展开更多
关键词 hydrocarbon accumulation coefficient analytical hierarchy process hydrocarbon resourceevaluation hydrocarbon accumulation system Liaohe Western Sag
下载PDF
Hydrocarbon accumulation principles in troughs within faulted depressions and their significance in exploration 被引量:5
17
作者 Zhao Xianzheng Jin Fengming Wang Quan Lu Xuejun 《Petroleum Science》 SCIE CAS CSCD 2011年第1期1-10,共10页
Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source k... Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin. 展开更多
关键词 Sand distribution multiple controlling factors preferential hydrocarbon accumulation accumulation in troughs accumulation model exploration method
下载PDF
Origin, Flow of Formation Water and Hydrocarbon Accumulation in the Zhenwu Area of the North Jiangsu Basin, China 被引量:8
18
作者 LI Mei LOU Zhanghua +4 位作者 JIN Aimin ZHU Rong SHANG Changjian YE Ying ZHU Zhenhong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期819-829,共11页
In order to understand the origin and flow of formation water and to evaluate the hydrocarbon accumulation and preservation conditions, the properties of formation water chemistry and dynamics of the Zhenwu area in th... In order to understand the origin and flow of formation water and to evaluate the hydrocarbon accumulation and preservation conditions, the properties of formation water chemistry and dynamics of the Zhenwu area in the southern Gaoyou Sag, North Jiangsu Basin, China, have been investigated. The results show that Xuzhuang oilfield is infiltrated discontinuously by meteoric water under gravity, which consequently leads to the desalination of formation water. Formation water in the Zhenwu and Caozhuang oilfields is less influenced by meteoric water infiltration, and the origin is interpreted to be connate water. Hydrocarbon migration, accumulation and preservation are closely related to the hydrodynamic field of formation water. Formation water concentrates gradually during the process of centrifugal flow released by mudstone compaction and the centripetal flow of meteoric water infiltration, leading to the high salinity of the central part. The geological conditions of the southern fault-terrace belt are poor for hydrocarbon accumulation and preservation as meteoric water infiltration, leaching and oxidation, while the central part, i.e., northern Zhenwu and Caozhuang oilfields is beneficial for an abundance of hydrocarbon accumulation. Most of the large scale oil-~as fields locate herein. 展开更多
关键词 formation water chemistry HYDRODYNAMIC fluid potential hydrocarbon accumulation South Gaoyou Sag North Jiang Basin
下载PDF
Paleoporosity and critical porosity in the accumulation period and their impacts on hydrocarbon accumulation—A case study of the middle Es3 member of the Paleogene formation in the Niuzhuang Sag, Dongying Depression, Southeastern Bohai Bay Basin, East Chi 被引量:8
19
作者 Liu Mingjie Liu Zhen +1 位作者 Sun Xiaoming Wang Biao 《Petroleum Science》 SCIE CAS CSCD 2014年第4期495-507,共13页
Similar reservoir sandbodies and fault conduit systems in the sandstone reservoirs in the middle Es3 member of the Niuzhuang Sag have been problematic for a long time. The following problems remain unsolved: 1) The ... Similar reservoir sandbodies and fault conduit systems in the sandstone reservoirs in the middle Es3 member of the Niuzhuang Sag have been problematic for a long time. The following problems remain unsolved: 1) The distribution of sandstone porosity is inconsistent with the hydrocarbon accumulation. The oil sandstones have low porosity instead of high porosity. 2) Sandstones, which have the same properties, have different levels of oiliness, and the sandstones with almost the same properties show different degrees of oil-bearing capacity. This study analyzes the condition of reservoirs in the research area during the accumulation period in terms of paleoporosity estimation and discusses the critical porosity of the sandstone reservoirs during the same period. The following conclusions can be drawn from the results. 1) Although reservoir properties are low at present and some reservoirs have become tight, the paleoporosity ranging from 18% to 25% is greater than the critical porosity of 13.9%. As the: loss of porosity is different in terms of burial history, the present porosity cannot reflect porosity during the accumulation period. Similar/y, high porosity during the accumulation period does not indicate that tbe present porosity is high. 2) The present reservoir location is consistent with the distribution of high paleoporosity during the accumulation period. This result indicates that high porosity belts are prone to hydrocarbon accumulation because of the dominant migration pathways generated as a result of property discrepancies under similar fault conduit conditions. Consequently, the hydrocarbon mainly accumulates in high porosity belts. Paleoporosity during the accumulation period is found to be a vital controlling factor. Therefore, high paleoporosity sandstones in the middle Es3 member of the Niuzhuang Sag have great potential for future exploration. 展开更多
关键词 Paleoporosity critical porosity dominant migration pathways hydrocarbon accumulation middle Es3 member Niuzhuang Sag Bohai Bay Basin
下载PDF
A Study of the Migration and Accumulation Efficiency and the Genesis of Hydrocarbon Natural Gas in the Xujiaweizi Fault Depression 被引量:6
20
作者 LI Jijun LU Shuangfang +2 位作者 XUE Haitao HUO Qiuli XU Qingxia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期629-635,共7页
In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolys... In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolysis experiment in a closed system was designed and carried out. Based on this, kinetic models for describing gas generation from organic matter and carbon isotope fractionation during this process were established, calibrated and then extrapolated to geologic conditions by combining the thermal history data of the Xushen-1 Well. The results indicate that the coal measures in the Xujiaweizi fault depression are typical "high-efficiency gas sources", the natural gas generated from them has a high migration and accumulation efficiency, and consequently a large-scale natural gas accumulation occurred in the area. The highly/over matured coal measures in the Xujiaweizi fault depression generate coaliferous gas with a high δ^13C1 value (〉 -20‰) at the late stage, making the carbon isotope composition of organic alkane gases abnormally heavy. In addition, the mixing and dissipation through the caprock of natural gas can result in the negative carbon isotope sequence (δ^13C1 〉δ^13C2 〉δ^13C3 〉δ^13C4) of organic alkane gases, and the dissipation can also lead to the abnormally heavy carbon isotope composition of organic alkane gases. As for the discovery of inorganic nonhydrocarbon gas reservoirs, it can only serve as an accessorial evidence rather than a direct evidence that the hydrocarbon gas is inorganic. As a result, it needs stronger evidence to classify the hydrocarbon natural gas in the Xujiaweizi fault depression as inorganic gas. 展开更多
关键词 Xujiaweizi fault depression hydrocarbon natural gas migration and accumulation efficiency GENESIS carbon isotope fractionation KINETICS
下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部