The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include ...Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include isolated protrUding topography and similar adjacent Protruding topography. The concluaion drawn from thisstudy is that the effects Of isolated protruding topography are remarkably larger for Rayleigh wave propagation than for P and SV they waves; Considering adjacent irregUlar toography ground motion is amplified, the duration of ground motion becomes longer and the speCtral ratios exhibit narrowband peaks Considering adjacent irregular topography and Rayleigh wave Propagation, the theoretical results wb more approach the results obtained in practice.展开更多
In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based o...In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based on ground penetrating radar( GPR) data. Compared with the traditional TIN algorithm,the LCTIN algorithm introduced a layer constraint to the discrete data points during the 3 D modelling process,and it can dynamically construct networks from layer to layer and implement 3 D modelling for arbitrary shapes with high precision. The experimental results validated this method,the proposed algorithm not only can maintain the rationality of triangulation network,but also can obtain a good generation speed. In addition,the algorithm is also introduced to our self-developed 3 D visualization platform,which utilized GPR data to model geological diseases. Therefore the feasibility of the algorithm is verified in the practical application.展开更多
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismi...The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.展开更多
A simple and fast prediction scheme is presented for train-induced ground and building vibrations.Simple models such as(one-dimensional)transfer matrices are used for the vehicle–track–soil interaction and for the b...A simple and fast prediction scheme is presented for train-induced ground and building vibrations.Simple models such as(one-dimensional)transfer matrices are used for the vehicle–track–soil interaction and for the building–soil interaction.The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space.The prediction is divided into the parts“emission”(excitation by railway traffic),“transmission”(wave propagation through the soil)and“immission”(transfer into a building).The link between the modules is made by the excitation force between emission and transmission,and by the free-field vibration between transmission and immission.All formula for the simple vehicle–track,soil and building models are given in this article.The behaviour of the models is demonstrated by typical examples,including the mitigation of train vibrations by elastic track elements,the low-and high-frequency cut-offs characteristic for layered soils,and the interacting soil,wall and floor resonances of multi-storey buildings.It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models,the finite-element boundary-element models of the track,the wavenumber integrals for the soil and the three-dimensional finite-element models of the building.In addition,measurement examples are given for each part of the prediction,confirming that the methods provide reasonable results.As the prediction models are fast in calculation,many predictions can be done,for example to assess the environmental effect along a new railway line.The simple models have the additional advantage that the user needs to know only a minimum of parameters.So,the prediction is fast and user-friendly,but also theoretically and experimentally well-founded.展开更多
This paper describes a level-of-detail rendering technique for large-scale irregular volume datasets.It is well known that the memory bandwidth consumed by visibility sorting becomes the limiting factor when carrying ...This paper describes a level-of-detail rendering technique for large-scale irregular volume datasets.It is well known that the memory bandwidth consumed by visibility sorting becomes the limiting factor when carrying out volume rendering of such datasets.To develop a sorting-free volume rendering technique,we previously proposed a particle-based technique that generates opaque and emissive particles using a density function constant within an irregular volume cell and projects the particles onto an image plane with sub-pixels.When the density function changes significantly in an irregular volume cell,the cell boundary may become prominent,which can cause blocky noise.When the number of the sub-pixels increases,the required frame buffer tends to be large.To solve this problem,this work proposes a new particle-based volume rendering which generates particles using metropolis sampling and renders the particles using the ensemble average. To confirm the effectiveness of this method,we applied our proposed technique to several irregular volume datasets,with the result that the ensemble average outperforms the sub-pixel average in computational complexity and memory usage. In addition,the ensemble average technique allowed us to implement a level of detail in the interactive rendering of a 71-million-cell hexahedral volume dataset and a 26-million-cell quadratic tetrahedral volume dataset.展开更多
将既有的车辆-有砟轨道-路基-层状地基耦合系统垂向振动解析模型进行修改,使模型适应于板式无砟轨道的状况。针对我国客运专线线路情况,利用模型比较分析了有砟与板式无砟两种轨道结构下高速列车运行引起的地基振动,得到地基表面垂向振...将既有的车辆-有砟轨道-路基-层状地基耦合系统垂向振动解析模型进行修改,使模型适应于板式无砟轨道的状况。针对我国客运专线线路情况,利用模型比较分析了有砟与板式无砟两种轨道结构下高速列车运行引起的地基振动,得到地基表面垂向振动加速度的振级、时程曲线和Z振级,动应力的功率谱与时程曲线;并讨论了轨道随机不平顺对地基振动的影响。分析结果表明:板式无砟轨道具有更好的隔振能力,板式无砟轨道情况下的地基振动加速度和动应力都明显小于有砟轨道的情况,其中Z振级减小约10~20 d B,且减小振动的主要频率分布在10~40 Hz的中频范围内;移动轴荷载对地基的低频振动贡献较大,而轨道随机不平顺主要对中高频振动产生作用,且板式无砟轨道情况下轨道随机不平顺对地基振动的影响远大于有砟轨道的情况,因此板式无砟轨道需更严格控制轨道的平顺状态。展开更多
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
文摘Effects of irregUlar topography on ground motion for incident P, SV and the propagation of Rayleigh waves are studied by combining finite element method with modified transmitting boundary. TheoretiCal models include isolated protrUding topography and similar adjacent Protruding topography. The concluaion drawn from thisstudy is that the effects Of isolated protruding topography are remarkably larger for Rayleigh wave propagation than for P and SV they waves; Considering adjacent irregUlar toography ground motion is amplified, the duration of ground motion becomes longer and the speCtral ratios exhibit narrowband peaks Considering adjacent irregular topography and Rayleigh wave Propagation, the theoretical results wb more approach the results obtained in practice.
基金Supported by the National Science Foundation of China(61302157)the National High Technology Research and Development Program of China(863 Program)(2012AA12A308)the Yue Qi Young Scholars Project of China University of Mining&Technology(Beijing)(800015Z1117)
文摘In this paper,a layer-constrained triangulated irregular network( LC-TIN) algorithm is proposed for three-dimensional( 3 D) modelling,and applied to construct a 3 D model for geological disease information based on ground penetrating radar( GPR) data. Compared with the traditional TIN algorithm,the LCTIN algorithm introduced a layer constraint to the discrete data points during the 3 D modelling process,and it can dynamically construct networks from layer to layer and implement 3 D modelling for arbitrary shapes with high precision. The experimental results validated this method,the proposed algorithm not only can maintain the rationality of triangulation network,but also can obtain a good generation speed. In addition,the algorithm is also introduced to our self-developed 3 D visualization platform,which utilized GPR data to model geological diseases. Therefore the feasibility of the algorithm is verified in the practical application.
基金partially funded by Italian Department of Civil Protection in the frame of the National ReLUIS Project 2005-2008 line 2-Theme 2
文摘The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.
文摘A simple and fast prediction scheme is presented for train-induced ground and building vibrations.Simple models such as(one-dimensional)transfer matrices are used for the vehicle–track–soil interaction and for the building–soil interaction.The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space.The prediction is divided into the parts“emission”(excitation by railway traffic),“transmission”(wave propagation through the soil)and“immission”(transfer into a building).The link between the modules is made by the excitation force between emission and transmission,and by the free-field vibration between transmission and immission.All formula for the simple vehicle–track,soil and building models are given in this article.The behaviour of the models is demonstrated by typical examples,including the mitigation of train vibrations by elastic track elements,the low-and high-frequency cut-offs characteristic for layered soils,and the interacting soil,wall and floor resonances of multi-storey buildings.It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models,the finite-element boundary-element models of the track,the wavenumber integrals for the soil and the three-dimensional finite-element models of the building.In addition,measurement examples are given for each part of the prediction,confirming that the methods provide reasonable results.As the prediction models are fast in calculation,many predictions can be done,for example to assess the environmental effect along a new railway line.The simple models have the additional advantage that the user needs to know only a minimum of parameters.So,the prediction is fast and user-friendly,but also theoretically and experimentally well-founded.
文摘This paper describes a level-of-detail rendering technique for large-scale irregular volume datasets.It is well known that the memory bandwidth consumed by visibility sorting becomes the limiting factor when carrying out volume rendering of such datasets.To develop a sorting-free volume rendering technique,we previously proposed a particle-based technique that generates opaque and emissive particles using a density function constant within an irregular volume cell and projects the particles onto an image plane with sub-pixels.When the density function changes significantly in an irregular volume cell,the cell boundary may become prominent,which can cause blocky noise.When the number of the sub-pixels increases,the required frame buffer tends to be large.To solve this problem,this work proposes a new particle-based volume rendering which generates particles using metropolis sampling and renders the particles using the ensemble average. To confirm the effectiveness of this method,we applied our proposed technique to several irregular volume datasets,with the result that the ensemble average outperforms the sub-pixel average in computational complexity and memory usage. In addition,the ensemble average technique allowed us to implement a level of detail in the interactive rendering of a 71-million-cell hexahedral volume dataset and a 26-million-cell quadratic tetrahedral volume dataset.
文摘将既有的车辆-有砟轨道-路基-层状地基耦合系统垂向振动解析模型进行修改,使模型适应于板式无砟轨道的状况。针对我国客运专线线路情况,利用模型比较分析了有砟与板式无砟两种轨道结构下高速列车运行引起的地基振动,得到地基表面垂向振动加速度的振级、时程曲线和Z振级,动应力的功率谱与时程曲线;并讨论了轨道随机不平顺对地基振动的影响。分析结果表明:板式无砟轨道具有更好的隔振能力,板式无砟轨道情况下的地基振动加速度和动应力都明显小于有砟轨道的情况,其中Z振级减小约10~20 d B,且减小振动的主要频率分布在10~40 Hz的中频范围内;移动轴荷载对地基的低频振动贡献较大,而轨道随机不平顺主要对中高频振动产生作用,且板式无砟轨道情况下轨道随机不平顺对地基振动的影响远大于有砟轨道的情况,因此板式无砟轨道需更严格控制轨道的平顺状态。