期刊文献+
共找到4,414篇文章
< 1 2 221 >
每页显示 20 50 100
A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating
1
作者 Rongrong Ren Luyang Su +2 位作者 Xinyu Meng Jianfang Wang Meng Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期429-458,共30页
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid... With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted. 展开更多
关键词 large-scale group decision making social network updating trust relationship group consensus feedback mechanism
下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
2
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
下载PDF
Resilience assessment and optimization method of city road network in the post-earthquake emergency period
3
作者 Wang Haoran Xiao Jia +1 位作者 Li Shuang Zhai Changhai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期765-779,共15页
The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience ... The post-earthquake emergency period,which is a sensitive time segment just after an event,mainly focuses on saving life and restoring social order.To improve the seismic resilience of city road networks,a resilience evaluation method used in the post-earthquake emergency period is proposed.The road seismic damage index of a city road network can consider the influence of roads,bridges and buildings along the roads,etc.on road capacity after an earthquake.A function index for a city road network is developed,which reflects the connectivity,redundancy,traffic demand and traffic function of the network.An optimization model for improving the road repair order in the post-earthquake emergency period is also developed according to the resilience evaluation,to enable decision support for city emergency management and achieve the best seismic resilience of the city road network.The optimization model is applied to a city road network and the results illustrate the feasibility of the resilience evaluation and optimization method for a city road network in the post-earthquake emergency period. 展开更多
关键词 city road network post-earthquake emergency period traffic demand resilience evaluation optimization model
下载PDF
Autonomous Vehicle Platoons In Urban Road Networks:A Joint Distributed Reinforcement Learning and Model Predictive Control Approach
4
作者 Luigi D’Alfonso Francesco Giannini +3 位作者 Giuseppe Franzè Giuseppe Fedele Francesco Pupo Giancarlo Fortino 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期141-156,共16页
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory... In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors. 展开更多
关键词 Distributed model predictive control distributed reinforcement learning routing decisions urban road networks
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
5
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) large-scale model Self-supervised learning Deep neural network
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
6
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification large-scale trainingcorpus LONG SHORT-TERM memory recurrentneural network
下载PDF
A Game-Theoretic Perspective on Resource Management for Large-Scale UAV Communication Networks 被引量:8
7
作者 Jiaxin Chen Ping Chen +3 位作者 Qihui Wu Yuhua Xu Nan Qi Tao Fang 《China Communications》 SCIE CSCD 2021年第1期70-87,共18页
As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerou... As a result of rapid development in electronics and communication technology,large-scale unmanned aerial vehicles(UAVs)are harnessed for various promising applications in a coordinated manner.Although it poses numerous advantages,resource management among various domains in large-scale UAV communication networks is the key challenge to be solved urgently.Specifically,due to the inherent requirements and future development trend,distributed resource management is suitable.In this article,we investigate the resource management problem for large-scale UAV communication networks from game-theoretic perspective which are exactly coincident with the distributed and autonomous manner.By exploring the inherent features,the distinctive challenges are discussed.Then,we explore several gametheoretic models that not only combat the challenges but also have broad application prospects.We provide the basics of each game-theoretic model and discuss the potential applications for resource management in large-scale UAV communication networks.Specifically,mean-field game,graphical game,Stackelberg game,coalition game and potential game are included.After that,we propose two innovative case studies to highlight the feasibility of such novel game-theoretic models.Finally,we give some future research directions to shed light on future opportunities and applications. 展开更多
关键词 large-scale UAV communication networks resource management game-theoretic model
下载PDF
Efficient Routing Protection Algorithm in Large-Scale Networks 被引量:3
8
作者 Haijun Geng Han Zhang Yangyang Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第2期1733-1744,共12页
With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have... With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information,which reduces the network’s availability greatly and affects the Internet service provider’s(ISP’s)service quality and reputation seriously.Therefore,improving network availability has become an urgent problem.As such,the Internet Engineering Task Force suggests the use of downstream path criterion(DC)to address all single-link failure scenarios.However,existing methods for implementing DC schemes are time consuming,require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant,especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC. 展开更多
关键词 large-scale network shortest path tree time complexity network failure real-time and mission-critical applications
下载PDF
Robust Virtual Network Embedding Based on Component Connectivity in Large-Scale Network 被引量:4
9
作者 Xiaojuan Wang Mei Song +1 位作者 Deyu Yuan Xiangru Liu 《China Communications》 SCIE CSCD 2017年第10期164-179,共16页
Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuris... Virtual network embedding problem which is NP-hard is a key issue for implementing software-defined network which is brought about by network virtualization. Compared with other studies which focus on designing heuristic algorithms to reduce the hardness of the NP-hard problem we propose a robust VNE algorithm based on component connectivity in large-scale network. We distinguish the different components and embed VN requests onto them respectively. And k-core is applied to identify different VN topologies so that the VN request can be embedded onto its corresponding component. On the other hand, load balancing is also considered in this paper. It could avoid blocked or bottlenecked area of substrate network. Simulation experiments show that compared with other algorithms in large-scale network, acceptance ratio, average revenue and robustness can be obviously improved by our algorithm and average cost can be reduced. It also shows the relationship between the component connectivity including giant component and small components and the performance metrics. 展开更多
关键词 large-scale network component connectivity virtual network embedding SDN
下载PDF
Sewage flow optimization algorithm for large-scale urban sewer networks based on network community division 被引量:1
10
作者 Lihui CEN Yugeng XI 《控制理论与应用(英文版)》 EI 2008年第4期372-378,共7页
By considering the flow control of urban sewer networks to minimize the electricity consumption of pumping stations, a decomposition-coordination strategy for energy savings based on network community division is deve... By considering the flow control of urban sewer networks to minimize the electricity consumption of pumping stations, a decomposition-coordination strategy for energy savings based on network community division is developed in this paper. A mathematical model characterizing the steady-state flow of urban sewer networks is first constructed, consisting of a set of algebraic equations with the structure transportation capacities captured as constraints. Since the sewer networks have no apparent natural hierarchical structure in general, it is very difficult to identify the clustered groups. A fast network division approach through calculating the betweenness of each edge is successfully applied to identify the groups and a sewer network with arbitrary configuration could be then decomposed into subnetworks. By integrating the coupling constraints of the subnetworks, the original problem is separated into N optimization subproblems in accordance with the network decomposition. Each subproblem is solved locally and the solutions to the subproblems are coordinated to form an appropriate global solution. Finally, an application to a specified large-scale sewer network is also investigated to demonstrate the validity of the proposed algorithm. 展开更多
关键词 large-scale sewer network BETWEENNESS network community division Decomposition and coordination
下载PDF
A Novel Network Screening Methodology for Rural Low-Volume Roads
11
作者 Ahmed Al-Kaisy Sajid Raza 《Journal of Transportation Technologies》 2023年第4期599-614,共16页
Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges ... Low-volume roads (LVRs) are an integral part of the rural transportation network providing access to remote rural areas and facilitating the movement of goods from farms to markets. These roads pose unique challenges for highway agencies including those related to safety management on the highway network. Specifically, traditional network screening methods using crash history can be effective in screening rural highways with higher traffic volumes and more frequent crashes. However, these traditional methods are often ineffective in screening LVR networks due to low traffic volumes and the sporadic nature of crash occurrence. Further, many of the LVRs are owned and operated by local agencies that may lack access to detailed crash, traffic and roadway data and the technical expertise within their staff. Therefore, there is a need for more efficient and practical network screening approaches to facilitate safety management programs on these roads. This study proposes one such approach which utilizes a heuristic scoring scheme in assessing the level of risk/safety for the purpose of network screening. The proposed scheme is developed based on the principles of US Highway Safety Manual (HSM) analysis procedures for rural highways and the fundamentals in safety science. The primary application of the proposed scheme is for ranking sites in network screening applications or for comparing multiple improvement alternatives at a specific site. The proposed approach does not require access to detailed databases, technical expertise, or exact information, making it an invaluable tool for small agencies and local governments (e.g. counties, townships, tribal governments, etc.). 展开更多
关键词 network Screening Low-Volume roads Rural Highways Traffic Safety
下载PDF
Spanning tree-based algorithm for hydraulic simulation of large-scale water supply networks 被引量:1
12
作者 Huan-feng DUAN Guo-ping YU 《Water Science and Engineering》 EI CAS 2010年第1期23-35,共13页
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by... With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods. 展开更多
关键词 large-scale networks hydraulic simulation graph theory fundamental loop spanning tree EFFICIENCY
下载PDF
Intelligent Networking Technology and Experimental Demonstration of Large-Scale Heterogeneous Optical Networks
13
作者 赵永利 张杰 +2 位作者 张民 纪越峰 顾畹仪 《China Communications》 SCIE CSCD 2011年第7期12-20,共9页
A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). ... A novel routing architecture named DREAMSCAPE is presented to solve the problem of path computation in multi-layer, multi-domain and multi-constraints scenarios, which includes Group Engine (GE) and Unit Engine (UE). GE, UE and their cooperation relationship form the main feature of DREAMSCAPE, i.e. Dual Routing Engine (DRE). Based on DRE, two routing schemes are proposed, which are DRE Forward Path Computation (DRE-FPC) and Hierarchical DRE Backward Recursive PCE-based Computation (HDRE-BRPC). In order to validate various intelligent networking technologies of large-scale heterogeneous optical networks, a DRE-based transport optical networks testbed is built with 1000 GMPLS-based control nodes and 5 optical transport nodes. The two proposed routing schemes, i.e. DRE-FPC and HDRE-BRPC, are validated on the testbed, compared with traditional Hierarchical Routing (HR) scheme. Experimental results show a good performance of DREAMSCAPE. 展开更多
关键词 optical networks DRE ROUTING HETEROGENEOUS large-scale
下载PDF
A Summary of the Large-Scale Access Convergence Network Structure
14
作者 LAN Julong ZHANG Xiaohui +5 位作者 SHEN Juan HU Yuxiang WANG Xiang MAO Zhenshan WANG Lingqiang LIANG Dong 《China Communications》 SCIE CSCD 2016年第S1期1-5,共5页
Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified mult... Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control. 展开更多
关键词 network architecture large-scale ACCESS CONVERGENCE flat structure ultra-small HOPS
下载PDF
An Adaptive Sliding Mode Tracking Controller Using BP Neural Networks for a Class of Large-scale Nonlinear Systems
15
作者 刘子龙 田方 张伟军 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期753-758,共6页
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece... A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller. 展开更多
关键词 BP NEURAL networks SLIDING mode control large-scale nonlinear systems uncertainty dynamics
下载PDF
Intelligent extraction of road cracks based on vehicle laser point cloud and panoramic sequence images
16
作者 Ming Guo Li Zhu +4 位作者 Ming Huang Jie Ji Xian Ren Yaxuan Wei Chutian Gao 《Journal of Road Engineering》 2024年第1期69-79,共11页
In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strat... In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development. 展开更多
关键词 road crack extraction Vehicle laser point cloud Panoramic sequence images Convolutional neural network
下载PDF
A time-space network-based model for transportation service optimization of China Railway Express
17
作者 Weichuan Yin Wenhu Hu +2 位作者 Xueting Yan Bo Peng Xiaoling Yang 《High-Speed Railway》 2024年第3期153-163,共11页
This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ... This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study. 展开更多
关键词 One Belt and One road China Railway Express Transportation service Mathematical optimization Time-space network
下载PDF
Design of High Precision Horizontal Control Network for Large-Scale Hydropower Project
18
作者 ZHANG Zhenglu LUO Changlin +1 位作者 DENG Yong XIE Niansheng 《Geo-Spatial Information Science》 2006年第4期235-239,共5页
A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial n... A new solution of combination network of GPS and high precise distance measurements with EDM is proposed. Meanwhile, it’s inadvisable only using GPS network without distance measurements. Three schemes: terrestrial network, GPS network and combination network are discussed for horizontal control network design of Xiangjiaba Dam in view of precision, reliability, coordinate and outlay in detail. 展开更多
关键词 large-scale hydropower project terrestrial network GPS network combination network of GPS and high precise distance measurements with EDM
下载PDF
ROBUST SLIDING MODE DECENTRALIZED CONTROL FOR A CLASS OF NONLINEAR INTERCONNECTED LARGE-SCALE SYSTEM WITH NEURAL NETWORKS
19
作者 CHENMou JIANGChang-sheng CHENWen-hua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期304-310,共7页
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is pro... A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method. 展开更多
关键词 nonlinear large-scale systems neural networks sliding mode control decentralized control
下载PDF
Energy-Efficient Routing Algorithm Based on Multipath Routing in Large-Scale Networks
20
作者 Haijun Geng Qidong Zhang +4 位作者 Jiangyuan Yao Wei Wang Zikun Jin Han Zhang Yangyang Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第8期2029-2039,共11页
A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic... A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability. 展开更多
关键词 Energy-efficient routing multipath routing link criticality model energy-saving ratio large-scale network
下载PDF
上一页 1 2 221 下一页 到第
使用帮助 返回顶部