Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes o...Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes or scattering media,is also evolving.Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency.This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction.First,we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium and ensure consistency in enhancement across frames.Then,we perform keyframe selection to optimize resource usage and reduce the impact of dynamic objects on the reconstruction results.After pose estimation using COLMAP,the selected keyframes undergo 3D reconstruction using neural radiance fields(NeRF)based on multi-resolution hash encoding for model construction and rendering.In terms of image enhancement,our method has been optimized in certain scenarios,demonstrating effectiveness in image enhancement and better continuity between consecutive frames of the same data.In terms of 3D reconstruction,our method achieved a peak signal-to-noise ratio(PSNR)of 18.40 dB and a structural similarity(SSIM)of 0.6677,indicating a good balance between operational efficiency and reconstruction quality.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Simultaneous location and mapping(SLAM)plays the crucial role in VR/AR application,autonomous robotics navigation,UAV remote control,etc.The traditional SLAM is not good at handle the data acquired by camera with fast...Simultaneous location and mapping(SLAM)plays the crucial role in VR/AR application,autonomous robotics navigation,UAV remote control,etc.The traditional SLAM is not good at handle the data acquired by camera with fast movement or severe jittering,and the efficiency need to be improved.The paper proposes an improved SLAM algorithm,which mainly improves the real-time performance of classical SLAM algorithm,applies KDtree for efficient organizing feature points,and accelerates the feature points correspondence building.Moreover,the background map reconstruction thread is optimized,the SLAM parallel computation ability is increased.The color images experiments demonstrate that the improved SLAM algorithm holds better realtime performance than the classical SLAM.展开更多
Real-time dense reconstruction of indoor scenes is of great research value for the application and development of service robots,augmented reality,cultural relics conservation and other fields.ORB-SLAM2 method is one ...Real-time dense reconstruction of indoor scenes is of great research value for the application and development of service robots,augmented reality,cultural relics conservation and other fields.ORB-SLAM2 method is one of the excellent open source algorithms in visual SLAM system,which is often used in indoor scene reconstruction.However,it is time-consuming and can only build sparse scene map by using ORB features to solve camera pose.In view of the shortcomings of ORB-SLAM2 method,this article proposes an improved ORB-SLAM2 solution,which uses a direct method based on light intensity to solve the camera pose.It can greatly reduce the amount of computation,the speed is significantly improved by about 5 times compared with the ORB feature method.A parallel thread of map reconstruction is added with surfel model,and depth map and RGB map are fused to build the dense map.A Realsense D415 sensor is used as RGB-D cameras to obtain the three-dimensional(3D)point clouds of an indoor environments.After calibration and alignment processing,the sensor is applied in the reconstruction experiment of indoor scene with the improved ORB-SLAM2 method.Results show that the improved ORB-SLAM2 algorithm cause a great improvement in processing speed and reconstructing density of scenes.展开更多
Image-based 3D modeling is an effective method for reconstructing large-scale scenes,especially city-level scenarios.In the image-based modeling pipeline,obtaining a watertight mesh model from a noisy multi-view stere...Image-based 3D modeling is an effective method for reconstructing large-scale scenes,especially city-level scenarios.In the image-based modeling pipeline,obtaining a watertight mesh model from a noisy multi-view stereo point cloud is a key step toward ensuring model quality.However,some state-of-the-art methods rely on the global Delaunay-based optimization formed by all the points and cameras;thus,they encounter scaling problems when dealing with large scenes.To circumvent these limitations,this study proposes a scalable pointcloud meshing approach to aid the reconstruction of city-scale scenes with minimal time consumption and memory usage.Firstly,the entire scene is divided along the x and y axes into several overlapping chunks so that each chunk can satisfy the memory limit.Then,the Delaunay-based optimization is performed to extract meshes for each chunk in parallel.Finally,the local meshes are merged together by resolving local inconsistencies in the overlapping areas between the chunks.We test the proposed method on three city-scale scenes with hundreds of millions of points and thousands of images,and demonstrate its scalability,accuracy,and completeness,compared with the state-of-the-art methods.展开更多
Objective To assesse the outcomes of one-stage limb reconstruction after removal of skin cancers defect.Methods This prospective study was conducted from September 2017 to January 2020 and included 15 patients.All pat...Objective To assesse the outcomes of one-stage limb reconstruction after removal of skin cancers defect.Methods This prospective study was conducted from September 2017 to January 2020 and included 15 patients.All patients underwent extensive tumor resection and one-stage Pelnac®reconstruction of large skin defects,and regular postoperative follow-up was scheduled.At the 6-month follow-up,tumor recurrence and scar quality was assessed using the Vancouver Scar Scale(VSS).None of the patients exhibited infection,wound necrosis,hematoma,seroma,or recurrence.Results All the skin grafts were well accepted by the patients.Nine patients reported normal or near-normal sensory function,while six reported slight sensory loss.No cases of significant functional loss were observed.We enrolled 10 men and 5 women with a mean age of 63.9 years(range:46-78 years).The mean follow-up duration was 20.6 months(range:12-36 months).The skin tumors were located on the feet(n=4),forearms(n=3),and legs(n=8).The malignant tumors included malignant melanomas(13.3%),basal cell carcinomas(33.3%),and squamous cell carcinomas(53.3%).The mean operative time was 40.7 min.Two patients underwent radiotherapy.The average length of hospital stay was 2.6 days.The mean skin defect area was 33.2 cm^(2)(range:16.6-51.6 cm^(2)).The patient satisfaction score(regarding the aesthetic appearance of the grafted area)was 79.7/100,and the VSS score was 3.8.Conclusion Pelnac®dermal templates facilitate efficient and reliable reconstruction of skin defects after skin cancer resection.展开更多
基金This work was supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes or scattering media,is also evolving.Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency.This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction.First,we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium and ensure consistency in enhancement across frames.Then,we perform keyframe selection to optimize resource usage and reduce the impact of dynamic objects on the reconstruction results.After pose estimation using COLMAP,the selected keyframes undergo 3D reconstruction using neural radiance fields(NeRF)based on multi-resolution hash encoding for model construction and rendering.In terms of image enhancement,our method has been optimized in certain scenarios,demonstrating effectiveness in image enhancement and better continuity between consecutive frames of the same data.In terms of 3D reconstruction,our method achieved a peak signal-to-noise ratio(PSNR)of 18.40 dB and a structural similarity(SSIM)of 0.6677,indicating a good balance between operational efficiency and reconstruction quality.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
基金This work is supported by the National Natural Science Foundation of China(Grant No.61672279)Project of“Six Talents Peak”in Jiangsu(2012-WLW-023)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China(2016491411).
文摘Simultaneous location and mapping(SLAM)plays the crucial role in VR/AR application,autonomous robotics navigation,UAV remote control,etc.The traditional SLAM is not good at handle the data acquired by camera with fast movement or severe jittering,and the efficiency need to be improved.The paper proposes an improved SLAM algorithm,which mainly improves the real-time performance of classical SLAM algorithm,applies KDtree for efficient organizing feature points,and accelerates the feature points correspondence building.Moreover,the background map reconstruction thread is optimized,the SLAM parallel computation ability is increased.The color images experiments demonstrate that the improved SLAM algorithm holds better realtime performance than the classical SLAM.
基金This work was supported by Henan Province Science and Technology Project under Grant No.182102210065.
文摘Real-time dense reconstruction of indoor scenes is of great research value for the application and development of service robots,augmented reality,cultural relics conservation and other fields.ORB-SLAM2 method is one of the excellent open source algorithms in visual SLAM system,which is often used in indoor scene reconstruction.However,it is time-consuming and can only build sparse scene map by using ORB features to solve camera pose.In view of the shortcomings of ORB-SLAM2 method,this article proposes an improved ORB-SLAM2 solution,which uses a direct method based on light intensity to solve the camera pose.It can greatly reduce the amount of computation,the speed is significantly improved by about 5 times compared with the ORB feature method.A parallel thread of map reconstruction is added with surfel model,and depth map and RGB map are fused to build the dense map.A Realsense D415 sensor is used as RGB-D cameras to obtain the three-dimensional(3D)point clouds of an indoor environments.After calibration and alignment processing,the sensor is applied in the reconstruction experiment of indoor scene with the improved ORB-SLAM2 method.Results show that the improved ORB-SLAM2 algorithm cause a great improvement in processing speed and reconstructing density of scenes.
基金This work was supported by the Natural Science Foundation of China(Nos.61632003,61873265)。
文摘Image-based 3D modeling is an effective method for reconstructing large-scale scenes,especially city-level scenarios.In the image-based modeling pipeline,obtaining a watertight mesh model from a noisy multi-view stereo point cloud is a key step toward ensuring model quality.However,some state-of-the-art methods rely on the global Delaunay-based optimization formed by all the points and cameras;thus,they encounter scaling problems when dealing with large scenes.To circumvent these limitations,this study proposes a scalable pointcloud meshing approach to aid the reconstruction of city-scale scenes with minimal time consumption and memory usage.Firstly,the entire scene is divided along the x and y axes into several overlapping chunks so that each chunk can satisfy the memory limit.Then,the Delaunay-based optimization is performed to extract meshes for each chunk in parallel.Finally,the local meshes are merged together by resolving local inconsistencies in the overlapping areas between the chunks.We test the proposed method on three city-scale scenes with hundreds of millions of points and thousands of images,and demonstrate its scalability,accuracy,and completeness,compared with the state-of-the-art methods.
文摘Objective To assesse the outcomes of one-stage limb reconstruction after removal of skin cancers defect.Methods This prospective study was conducted from September 2017 to January 2020 and included 15 patients.All patients underwent extensive tumor resection and one-stage Pelnac®reconstruction of large skin defects,and regular postoperative follow-up was scheduled.At the 6-month follow-up,tumor recurrence and scar quality was assessed using the Vancouver Scar Scale(VSS).None of the patients exhibited infection,wound necrosis,hematoma,seroma,or recurrence.Results All the skin grafts were well accepted by the patients.Nine patients reported normal or near-normal sensory function,while six reported slight sensory loss.No cases of significant functional loss were observed.We enrolled 10 men and 5 women with a mean age of 63.9 years(range:46-78 years).The mean follow-up duration was 20.6 months(range:12-36 months).The skin tumors were located on the feet(n=4),forearms(n=3),and legs(n=8).The malignant tumors included malignant melanomas(13.3%),basal cell carcinomas(33.3%),and squamous cell carcinomas(53.3%).The mean operative time was 40.7 min.Two patients underwent radiotherapy.The average length of hospital stay was 2.6 days.The mean skin defect area was 33.2 cm^(2)(range:16.6-51.6 cm^(2)).The patient satisfaction score(regarding the aesthetic appearance of the grafted area)was 79.7/100,and the VSS score was 3.8.Conclusion Pelnac®dermal templates facilitate efficient and reliable reconstruction of skin defects after skin cancer resection.