期刊文献+
共找到236,450篇文章
< 1 2 250 >
每页显示 20 50 100
User-preferences based service selection model in large-scale services with various QoS properties
1
作者 刘慧 许东 +2 位作者 许德震 雷州 张龙 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期420-425,共6页
With the rapid growth of service scale, there are many services with the same functional properties but different non-flmctional properties on the Internet. There have been some global optimizing service selection alg... With the rapid growth of service scale, there are many services with the same functional properties but different non-flmctional properties on the Internet. There have been some global optimizing service selection algorithms for service selection. However, most of those approaches cannot fully reflect users' preferences or are not fully suitable for large-scale services selection. In this paper, an ant colony optimization (ACO) algorithm for the model of global optimizing service selection with various quality of srevice (QoS) properties is employed, and a user-preference based large-scale service selection algorithm is proposed. This algorithm aims at optimizing user-preferred QoS properties and selecting services that meet all user-defined QoS thresholds. Experiment results prove that this algorithm is very efficient in this regard. 展开更多
关键词 service selection quilty of service (QoS) ant colony optimization (ACO)
下载PDF
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases 被引量:1
2
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States PRECIPITATION low-level jet large-scale environment diurnal variation
下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization
3
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
4
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane
5
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
下载PDF
Neural Network-Based State Estimation for Nonlinear Systems With Denial-of-Service Attack Under Try-Once-Discard Protocol
6
作者 Xueli Wang Shangwei Zhao +2 位作者 Ming Yang Xin Wang Xiaoming Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2182-2184,共3页
Dear Editor,This letter deals with state estimation issues of discrete-time nonlinear systems subject to denial-of-service(DoS)attacks under the try-once-discard(TOD)protocol.More specifically,to reduce the communicat... Dear Editor,This letter deals with state estimation issues of discrete-time nonlinear systems subject to denial-of-service(DoS)attacks under the try-once-discard(TOD)protocol.More specifically,to reduce the communication burden,a TOD protocol with novel update rules on protocol weights is designed for scheduling measurement outputs.In addition,unknown nonlinear functions vulnerable to DoS attacks are considered due to the openness and vulnerability of the network. 展开更多
关键词 service DOS service
下载PDF
Deep Reinforcement Learning-Based Task Offloading and Service Migrating Policies in Service Caching-Assisted Mobile Edge Computing
7
作者 Ke Hongchang Wang Hui +1 位作者 Sun Hongbin Halvin Yang 《China Communications》 SCIE CSCD 2024年第4期88-103,共16页
Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.... Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms. 展开更多
关键词 deep reinforcement learning mobile edge computing service caching service migrating
下载PDF
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
8
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 Load aggregation Regional large-scale Online recognition Feature extraction method
下载PDF
A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment
9
作者 Chenguang Ouyang Suxing Hu +6 位作者 Fengqi Long Shuai Shi Zhichao Yu Kaichun Zhao Zheng You Junyin Pi Bowen Xing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期1-10,共10页
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework... Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m. 展开更多
关键词 large-scale positioning Building vector matching Improved particle filter GPS-Denied Vector map
下载PDF
Detection of Real-Time Distributed Denial-of-Service (DDoS) Attacks on Internet of Things (IoT) Networks Using Machine Learning Algorithms
10
作者 Zaed Mahdi Nada Abdalhussien +1 位作者 Naba Mahmood Rana Zaki 《Computers, Materials & Continua》 SCIE EI 2024年第8期2139-2159,共21页
The primary concern of modern technology is cyber attacks targeting the Internet of Things.As it is one of the most widely used networks today and vulnerable to attacks.Real-time threats pose with modern cyber attacks... The primary concern of modern technology is cyber attacks targeting the Internet of Things.As it is one of the most widely used networks today and vulnerable to attacks.Real-time threats pose with modern cyber attacks that pose a great danger to the Internet of Things(IoT)networks,as devices can be monitored or service isolated from them and affect users in one way or another.Securing Internet of Things networks is an important matter,as it requires the use of modern technologies and methods,and real and up-to-date data to design and train systems to keep pace with the modernity that attackers use to confront these attacks.One of the most common types of attacks against IoT devices is Distributed Denial-of-Service(DDoS)attacks.Our paper makes a unique contribution that differs from existing studies,in that we use recent data that contains real traffic and real attacks on IoT networks.And a hybrid method for selecting relevant features,And also how to choose highly efficient algorithms.What gives the model a high ability to detect distributed denial-of-service attacks.the model proposed is based on a two-stage process:selecting essential features and constructing a detection model using the K-neighbors algorithm with two classifier algorithms logistic regression and Stochastic Gradient Descent classifier(SGD),combining these classifiers through ensemble machine learning(stacking),and optimizing parameters through Grid Search-CV to enhance system accuracy.Experiments were conducted to evaluate the effectiveness of the proposed model using the CIC-IoT2023 and CIC-DDoS2019 datasets.Performance evaluation demonstrated the potential of our model in robust intrusion detection in IoT networks,achieving an accuracy of 99.965%and a detection time of 0.20 s for the CIC-IoT2023 dataset,and 99.968%accuracy with a detection time of 0.23 s for the CIC-DDoS 2019 dataset.Furthermore,a comparative analysis with recent related works highlighted the superiority of our methodology in intrusion detection,showing improvements in accuracy,recall,and detection time. 展开更多
关键词 DDOS service NETWORKS
下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
11
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
下载PDF
A Large-Scale Group Decision Making Model Based on Trust Relationship and Social Network Updating
12
作者 Rongrong Ren Luyang Su +2 位作者 Xinyu Meng Jianfang Wang Meng Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期429-458,共30页
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid... With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted. 展开更多
关键词 large-scale group decision making social network updating trust relationship group consensus feedback mechanism
下载PDF
Sharing Smart Services,Jointly Promoting Trade Development
13
作者 Zhang Li 《China's Foreign Trade》 2024年第5期49-51,共3页
In 2024,the China International Fair for Trade in Services (hereinafter referred to as CIFTIS) opened in the China National Convention Center and Shougang Park on September 12th.The theme of the CIFTIS this time was&q... In 2024,the China International Fair for Trade in Services (hereinafter referred to as CIFTIS) opened in the China National Convention Center and Shougang Park on September 12th.The theme of the CIFTIS this time was"global services,shared prosperity",which is not only a window for allowing the world to discover the development of China's service trade,but is also a bridge for promoting global cooperation with regards to the service trade.As one of the world-famous service trade events,the CIFTIS has become an important business card allowing China to open up.The CIFTIS has attracted the attention of the whole world and become a bridge for all parties to share development opportunities,promote industrial growth,and strengthen communication. 展开更多
关键词 TRADE serviceS service
下载PDF
Assessment of International GNSS Service Global Ionosphere Map products over China region based on measurements from the Crustal Movement Observation Network of China 被引量:1
14
作者 Jin Hu HaiBing Ruan +2 位作者 FuQing Huang ShengYang Gu XianKang Dou 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期400-407,共8页
The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G... The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions. 展开更多
关键词 International GNSS service(IGS)Global Ionosphere Maps(GIM) Crustal Movement Observation Network of China(CMONOC) total electron content(TEC) data assessment
下载PDF
Dynamical distribution of continuous service time model involving non-Maxwellian collision kernel and value functions
15
作者 Minfang Zhao Lingting Kong +1 位作者 Miao Liu Shaoyong Lai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期340-348,共9页
The distribution of continuous service time in call centers is investigated.A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of conti... The distribution of continuous service time in call centers is investigated.A non-Maxwellian collision kernel combining two different value functions in the interaction rule are used to describe the evolution of continuous service time,respectively.Using the statistical mechanical and asymptotic limit methods,Fokker–Planck equations are derived from the corresponding Boltzmann-type equations with non-Maxwellian collision kernels.The steady-state solutions of the Fokker–Planck equation are obtained in exact form.Numerical experiments are provided to support our results under different parameters. 展开更多
关键词 kinetic theory service time Fokker-Planck equation value function
下载PDF
Research progress and future prospects in the service security of key blast furnace equipment
16
作者 Yanxiang Liu Kexin Jiao +3 位作者 Jianliang Zhang Cui Wang Lei Zhang Xiaoyue Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2121-2135,共15页
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve... The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions. 展开更多
关键词 blast furnace EQUIPMENT service security blast furnace campaign SELF-REPAIR
下载PDF
Healthcare Services Interoperability in Kenya: Challenges and Opportunities
17
作者 Antony G. Musabi Andrew Kiprop Kipkebut 《E-Health Telecommunication Systems and Networks》 2024年第1期1-11,共11页
In an attempt to assess the Kenyan healthcare system, this study looks at the current efforts that are already in place, what challenges they face, and what strategies can be put into practice to foster interoperabili... In an attempt to assess the Kenyan healthcare system, this study looks at the current efforts that are already in place, what challenges they face, and what strategies can be put into practice to foster interoperability. By reviewing a variety of literature and using statistics, the paper ascertains notable impediments such as the absence of standard protocols, lack of adequate technological infrastructure, and weak regulatory frameworks. Resultant effects from these challenges regarding health provision target enhanced data sharing and merging for better patient outcomes and allocation of resources. It also highlights several opportunities that include the adoption of emerging technologies, and the establishment of public-private partnerships to strengthen the healthcare framework among others. In this regard, the article provides recommendations based on stakeholder views and global best practices addressed to policymakers, medical practitioners, and IT specialists concerned with achieving effective interoperability within Kenya’s health system. This research is relevant because it adds knowledge to the existing literature on how healthcare quality can be improved to make it more patient-centered especially in Kenya. 展开更多
关键词 Healthcare services INTEROPERABILITY Data Exchange
下载PDF
Exact Tail Asymptotics for a Queueing System with a Retrial Orbit and Batch Service
18
作者 Huijun Lu 《Applied Mathematics》 2024年第6期406-420,共15页
This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts servi... This paper discusses a queueing system with a retrial orbit and batch service, in which the quantity of customers’ rooms in the queue is finite and the space of retrial orbit is infinite. When the server starts serving, it serves all customers in the queue in a single batch, which is the so-called batch service. If a new customer or a retrial customer finds all the customers’ rooms are occupied, he will decide whether or not to join the retrial orbit. By using the censoring technique and the matrix analysis method, we first obtain the decay function of the stationary distribution for the quantity of customers in the retrial orbit and the quantity of customers in the queue. Then based on the form of decay rate function and the Karamata Tauberian theorem, we finally get the exact tail asymptotics of the stationary distribution. 展开更多
关键词 Exact Tail Asymptotics Batch service Censoring Technique Matrix Analysis Method Karamata Tauberian Theorem
下载PDF
Spatiotemporal variations in ecosystem services and their trade-offs and synergies against the background of the gully control and land consolidation project on the Loess Plateau,China
19
作者 WANG Jing WEI Yulu +2 位作者 PENG Biao LIU Siqi LI Jianfeng 《Journal of Arid Land》 SCIE CSCD 2024年第1期131-145,共15页
Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio... Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security. 展开更多
关键词 ecosystem services trade-offs and synergies gully control and land consolidation habitat quality Integrated Valuation of Ecosystem services and Trade-offs(InVEST)model Loess Plateau
下载PDF
Factorized Smith Method for A Class of High-Ranked Large-Scale T-Stein Equations
20
作者 LI Xiang YU Bo TANG Qiong 《Chinese Quarterly Journal of Mathematics》 2024年第3期235-249,共15页
We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requi... We introduce a factorized Smith method(FSM)for solving large-scale highranked T-Stein equations within the banded-plus-low-rank structure framework.To effectively reduce both computational complexity and storage requirements,we develop techniques including deflation and shift,partial truncation and compression,as well as redesign the residual computation and termination condition.Numerical examples demonstrate that the FSM outperforms the Smith method implemented with a hierarchical HODLR structured toolkit in terms of CPU time. 展开更多
关键词 large-scale T-Stein equations High-ranked Deflation and shift Partially truncation and compression Smith method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部