Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments ...Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.展开更多
We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstr...We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.展开更多
The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to ...The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.展开更多
The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature o...The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.展开更多
Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic str...A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.展开更多
We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1...We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1 at the celestial equator and Subsample 2 further north. In Subsample 1 we discover two compact super-large-scale structures: the Sloan Great Wall and the CfA Great Wall. The Sloan Great Wall, located at a median redshift of z= 0.07804, has a total length of about 433 Mpc and a mean galaxy density of about six times that of the whole sample. Most of its member galaxies are of medium size and brightness. The CfA Great Wall, located at a median redshift of z = 0.03058, has a total length of about 251 Mpc and includes large percentages of faint and small galaxies and relatively fewer early-type galaxies.展开更多
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu...Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m...Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.展开更多
In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted init...In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.展开更多
Background: The importance of structurally diverse forests for the conservation of biodiversity and provision of a wide range of ecosystem services has been widely recognised. However, tools to quantify structural div...Background: The importance of structurally diverse forests for the conservation of biodiversity and provision of a wide range of ecosystem services has been widely recognised. However, tools to quantify structural diversity of forests in an objective and quantitative way across many forest types and sites are still needed, for example to support biodiversity monitoring. The existing approaches to quantify forest structural diversity are based on small geographical regions or single forest types, typically using only small data sets.Results: Here we developed an index of structural diversity based on National Forest Inventory(NFI) data of BadenWurttemberg, Germany, a state with 1.3 million ha of diverse forest types in different ownerships. Based on a literature review, 11 aspects of structural diversity were identified a priori as crucially important to describe structural diversity. An initial comprehensive list of 52 variables derived from National Forest Inventory(NFI) data related to structural diversity was reduced by applying five selection criteria to arrive at one variable for each aspect of structural diversity. These variables comprise 1) quadratic mean diameter at breast height(DBH), 2) standard deviation of DBH, 3) standard deviation of stand height, 4) number of decay classes, 5) bark-diversity index, 6) trees with DBH ≥ 40 cm, 7) diversity of flowering and fructification, 8) average mean diameter of downed deadwood, 9) mean DBH of standing deadwood, 10) tree species richness and 11) tree species richness in the regeneration layer. These variables were combined into a simple,additive index to quantify the level of structural diversity, which assumes values between 0 and 1. We applied this index in an exemplary way to broad forest categories and ownerships to assess its feasibility to analyse structural diversity in large-scale forest inventories.Conclusions: The forest structure index presented here can be derived in a similar way from standard inventory variables for most other large-scale forest inventories to provide important information about biodiversity relevant forest conditions and thus provide an evidence-base for forest management and planning as well as reporting.展开更多
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tool...Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat- tened parallel to the orientations of red luminous galaxies with axis ratios of -0.5 and ,-0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60 h^-1 Mpc.展开更多
Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified mult...Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control.展开更多
The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to...The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.展开更多
Large-scale poverty alleviation is one of the three major strategic actions of Guizhou Province to plan for leapfrog development.Through building an econometric model,this paper made an empirical analysis of relations...Large-scale poverty alleviation is one of the three major strategic actions of Guizhou Province to plan for leapfrog development.Through building an econometric model,this paper made an empirical analysis of relationship between farmers'income structure and consumption in Guizhou Province in the context of large-scale poverty alleviation.The results show that the wage income and transfer income of rural residents in Guizhou Province have a significant impact on the promotion of their consumption,and the impact of income from household business operation is also significant,but the impact is relatively weak,while the contribution of farmers'property income to their consumption is insufficient.Finally,in view of the problems in the relationship between the income structure and consumption of farmers in Guizhou Province,it came up with policy recommendations including broadening the income channels,increasing farmers'income,improving the income structure,and promoting farmers'consumption.展开更多
Crystal structures of several naturally occurring minerals are known to contain various deformities such as cones, cylinders, and tapered hollow cylinders with different apex angles, which have been described as solid...Crystal structures of several naturally occurring minerals are known to contain various deformities such as cones, cylinders, and tapered hollow cylinders with different apex angles, which have been described as solid and hollow cones, “cups”, “lampshades” as well as rolled cylindrical planes. The present study was undertaken to determine how these different shapes within a crystal structure can be explained. Since the usual method of observing them is by either X-ray and electron diffraction or electron microscopy, we investigated Fourier transforms of these forms, which were considered in terms of spirals with varying radii. Three types of spirals were considered, namely: 1) Archimedean spiral;2) Involute of a circle or power spiral and 3) Logarithmic spiral. Spiraling caused the radius r to be modified by a factor f(θ), so that r becomes rf(θ), where f(θ) = θ for Archimedean helix, θn for power helices like θ1/2 for Fermat’s helix, θ-1 for hyperbolic helix and eθ or e-θ for logarithmic helix, r and θ being co-ordinates of the map on which the helix has to be drawn, f(θ) is unaffected by the magnitude of r. Expressions have been derived that explain the diffraction of structures containing the distortions described above, and bring all of these phenomena under one “umbrella” of a comprehensive theory.展开更多
This is a review of the status of the universe as described by the standard cosmological model combined with the inflationary paradigm. Their key features and predictions, consistent with the WMAP (Wilkinson Microwave...This is a review of the status of the universe as described by the standard cosmological model combined with the inflationary paradigm. Their key features and predictions, consistent with the WMAP (Wilkinson Microwave Anisotropies Probe) and Planck Probe 2013 results, provide a significant mechanism to generate the primordial gravitational waves and the density perturbations which grow over time, and later become the large-scale structure of the universe—from the quantum fluctuations in the early era to the structure observed 13.7 billion later, our epoch. In the single field slow-roll paradigm, the primordial quantum fluctuations in the inflaton field itself translate into the curvature and density perturbations which grow over time via gravitational instability. High density regions continuously attract more matter from the surrounding space, the high density regions become more and more dense in time while depleting the low density regions. At late times the highest density regions peaks collapse into the large structure of the universe, whose gravitational instability effects are observed in the clustering features of galaxies in the sky. Thus, the origin of all structure in the universe probably comes from an early era where the universe was filled with a scalar field and nothing else.展开更多
On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface b...On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface brightness distributions from observed images. As examples, the non-edge-on spiral galaxies PGC 24996, which is face-on, and M31, which is inclined, are studied. The scale height, pitch angle and inclination angle of M31, our nearest neighbor, that are presented in this work, agree well with previous research.展开更多
The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analy...The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analytical fitting. Observational evidence for a cellular universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell boundaries is constructed to compare, as regards general appearance, with the observed CfA map of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the largest observed void size.展开更多
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through an associateship program+1 种基金IISER Tirupati for support through a postdoctoral fellowshipFunding for the SDSS and SDSS-Ⅱhas been provided by the Alfred P.Sloan Foundation,the U.S.Department of Energy,the National Aeronautics and Space Administration,the Japanese Monbukagakusho,the Max Planck Society,and the Higher Education Funding Council for England。
文摘Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.
基金the support from the science research grants from the China Manned Space Project with NO.CMS-CSST-2021-B01supported by the World Premier International Research Center Initiative(WPI),MEXT,Japan+12 种基金the Ontario Research Fund:Research Excellence Program(ORF-RE)Natural Sciences and Engineering Research Council of Canada(NSERC)[funding reference number RGPIN-2019-067,CRD 523638-201,555585-20]Canadian Institute for Advanced Research(CIFAR)Canadian Foundation for Innovation(CFI)the National Natural Science Foundation of China(NSFC,Grant No.11929301)Simons FoundationThoth Technology IncAlexander von Humboldt Foundationthe Niagara supercomputers at the SciNet HPC Consortiumthe Canada Foundation for Innovationthe Government of OntarioOntario Research Fund—Research Excellencethe University of Toronto。
文摘We examine the possibility of applying the baryonic acoustic oscillation reconstruction method to improve the neutrino massΣm_νconstraint.Thanks to the Gaussianization of the process,we demonstrate that the reconstruction algorithm could improve the measurement accuracy by roughly a factor of two.On the other hand,the reconstruction process itself becomes a source of systematic error.While the algorithm is supposed to produce the displacement field from a density distribution,various approximations cause the reconstructed output to deviate on intermediate scales.Nevertheless,it is still possible to benefit from this Gaussianized field,given that we can carefully calibrate the“transfer function”between the reconstruction output and theoretical displacement divergence from simulations.The limitation of this approach is then set by the numerical stability of this transfer function.With an ensemble of simulations,we show that such systematic error could become comparable to statistical uncertainties for a DESI-like survey and be safely neglected for other less ambitious surveys.
基金supported in part by the National Natural Science Foundation of China(Nos.10135020 and 10575032)
文摘The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.
基金Project supported by the National Natural Science Foundation of China(No.10572084)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.
基金Supported by the Aeronautical Science Foundation of China(20121852031)
文摘A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.
基金Supported by the National Natural Science Foundation of China
文摘We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1 at the celestial equator and Subsample 2 further north. In Subsample 1 we discover two compact super-large-scale structures: the Sloan Great Wall and the CfA Great Wall. The Sloan Great Wall, located at a median redshift of z= 0.07804, has a total length of about 433 Mpc and a mean galaxy density of about six times that of the whole sample. Most of its member galaxies are of medium size and brightness. The CfA Great Wall, located at a median redshift of z = 0.03058, has a total length of about 251 Mpc and includes large percentages of faint and small galaxies and relatively fewer early-type galaxies.
基金the National Natural Science Foundation of China.
文摘Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.
基金This work was financially supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
基金supported by National Natural Science Foundation of China(Grant No.50675049)
文摘Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures.
基金Supported by the National Natural Science Foundation of China (No. 50236030, No. 50076038) and the Major State Basic Research Development Program of China (No. G19990222).
文摘In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.
基金supported by a grant from the Ministry of Science,Research and the Arts of Baden-Württemberg(7533-10-5-78)to Jürgen BauhusFelix Storch received additional support through the BBW ForWerts Graduate Program
文摘Background: The importance of structurally diverse forests for the conservation of biodiversity and provision of a wide range of ecosystem services has been widely recognised. However, tools to quantify structural diversity of forests in an objective and quantitative way across many forest types and sites are still needed, for example to support biodiversity monitoring. The existing approaches to quantify forest structural diversity are based on small geographical regions or single forest types, typically using only small data sets.Results: Here we developed an index of structural diversity based on National Forest Inventory(NFI) data of BadenWurttemberg, Germany, a state with 1.3 million ha of diverse forest types in different ownerships. Based on a literature review, 11 aspects of structural diversity were identified a priori as crucially important to describe structural diversity. An initial comprehensive list of 52 variables derived from National Forest Inventory(NFI) data related to structural diversity was reduced by applying five selection criteria to arrive at one variable for each aspect of structural diversity. These variables comprise 1) quadratic mean diameter at breast height(DBH), 2) standard deviation of DBH, 3) standard deviation of stand height, 4) number of decay classes, 5) bark-diversity index, 6) trees with DBH ≥ 40 cm, 7) diversity of flowering and fructification, 8) average mean diameter of downed deadwood, 9) mean DBH of standing deadwood, 10) tree species richness and 11) tree species richness in the regeneration layer. These variables were combined into a simple,additive index to quantify the level of structural diversity, which assumes values between 0 and 1. We applied this index in an exemplary way to broad forest categories and ownerships to assess its feasibility to analyse structural diversity in large-scale forest inventories.Conclusions: The forest structure index presented here can be derived in a similar way from standard inventory variables for most other large-scale forest inventories to provide important information about biodiversity relevant forest conditions and thus provide an evidence-base for forest management and planning as well as reporting.
基金supported by NSFC (Nos. 10533030, 10821302,10878001)the Knowledge Innovation Program of CAS (No. KJCX2-YW-T05)by 973 Program(No. 2007CB815402).
文摘Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat- tened parallel to the orientations of red luminous galaxies with axis ratios of -0.5 and ,-0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60 h^-1 Mpc.
基金supported by The National Key Technology R&D Program (Grant No. 2011BAH19B00)The National Basic Research Program of China (973) (Grant No. 2012CB315900)The National High Technology Research and Development Program of China (863) (Grant No. 2015AA016102)
文摘Under the requirement of everything over IP, network service shows the following characteristics:(1) network service increases its richness;(2) broadband streaming media becomes the mainstream. To achieve unified multi-service bearing in the IP network, the largescale access convergence network architecture is proposed. This flat access convergence structure with ultra-small hops, which shortens the service transmission path, reduces the complexity of the edge of the network, and achieves IP strong waist model with the integration of computation, storage and transmission. The key technologies are also introduced in this paper, including endto-end performance guarantee for real time interactive services, fog storing mechanism, and built-in safety transmission with integration of aggregation and control.
基金supported by the National Natural Science Foundation of China (grant Nos. 11922303, 119201003 and 12021003)supported by Hubei province Natural Science Fund for the Distinguished Young Scholars (No.2019CFA052)supported by CAS Project for Young Scientists in Basic Research YSBR-006。
文摘The improvements in the sensitivity of the gravitational wave(GW) network enable the detection of several large redshift GW sources by third-generation GW detectors. These advancements provide an independent method to probe the large-scale structure of the universe by using the clustering of the binary black holes(BBHs). The black hole catalogs are complementary to the galaxy catalogs because of large redshifts of GW events, which may imply that BBHs are a better choice than galaxies to probe the large-scale structure of the universe and cosmic evolution over a large redshift range. To probe the large-scale structure, we used the sky position of the BBHs observed by third-generation GW detectors to calculate the angular correlation function and the bias factor of the population of BBHs. This method is also statistically significant as 5000 BBHs are simulated. Moreover, for the third-generation GW detectors, we found that the bias factor can be recovered to within 33% with an observational time of ten years. This method only depends on the GW source-location posteriors;hence, it can be an independent method to reveal the formation mechanisms and origin of the BBH mergers compared to the electromagnetic method.
基金Project of National Social Science Foundation(19BJL081)Humanity and Social Science Project of Colleges and Universities of Guizhou Provincial Department of Education(2018gh04).
文摘Large-scale poverty alleviation is one of the three major strategic actions of Guizhou Province to plan for leapfrog development.Through building an econometric model,this paper made an empirical analysis of relationship between farmers'income structure and consumption in Guizhou Province in the context of large-scale poverty alleviation.The results show that the wage income and transfer income of rural residents in Guizhou Province have a significant impact on the promotion of their consumption,and the impact of income from household business operation is also significant,but the impact is relatively weak,while the contribution of farmers'property income to their consumption is insufficient.Finally,in view of the problems in the relationship between the income structure and consumption of farmers in Guizhou Province,it came up with policy recommendations including broadening the income channels,increasing farmers'income,improving the income structure,and promoting farmers'consumption.
文摘Crystal structures of several naturally occurring minerals are known to contain various deformities such as cones, cylinders, and tapered hollow cylinders with different apex angles, which have been described as solid and hollow cones, “cups”, “lampshades” as well as rolled cylindrical planes. The present study was undertaken to determine how these different shapes within a crystal structure can be explained. Since the usual method of observing them is by either X-ray and electron diffraction or electron microscopy, we investigated Fourier transforms of these forms, which were considered in terms of spirals with varying radii. Three types of spirals were considered, namely: 1) Archimedean spiral;2) Involute of a circle or power spiral and 3) Logarithmic spiral. Spiraling caused the radius r to be modified by a factor f(θ), so that r becomes rf(θ), where f(θ) = θ for Archimedean helix, θn for power helices like θ1/2 for Fermat’s helix, θ-1 for hyperbolic helix and eθ or e-θ for logarithmic helix, r and θ being co-ordinates of the map on which the helix has to be drawn, f(θ) is unaffected by the magnitude of r. Expressions have been derived that explain the diffraction of structures containing the distortions described above, and bring all of these phenomena under one “umbrella” of a comprehensive theory.
文摘This is a review of the status of the universe as described by the standard cosmological model combined with the inflationary paradigm. Their key features and predictions, consistent with the WMAP (Wilkinson Microwave Anisotropies Probe) and Planck Probe 2013 results, provide a significant mechanism to generate the primordial gravitational waves and the density perturbations which grow over time, and later become the large-scale structure of the universe—from the quantum fluctuations in the early era to the structure observed 13.7 billion later, our epoch. In the single field slow-roll paradigm, the primordial quantum fluctuations in the inflaton field itself translate into the curvature and density perturbations which grow over time via gravitational instability. High density regions continuously attract more matter from the surrounding space, the high density regions become more and more dense in time while depleting the low density regions. At late times the highest density regions peaks collapse into the large structure of the universe, whose gravitational instability effects are observed in the clustering features of galaxies in the sky. Thus, the origin of all structure in the universe probably comes from an early era where the universe was filled with a scalar field and nothing else.
基金Supported by the National Natural Science Foundation of China
文摘On the basis of Poisson's equation for the logarithmic perturbation of matter density, we provide improved estimates of scale heights and spiral structures for non-edge-on spiral galaxies by subtracting the surface brightness distributions from observed images. As examples, the non-edge-on spiral galaxies PGC 24996, which is face-on, and M31, which is inclined, are studied. The scale height, pitch angle and inclination angle of M31, our nearest neighbor, that are presented in this work, agree well with previous research.
文摘The size distributions of 2D and 3D Voronoi cells and of cells of Vp(2, 3),--2D cut of 3D Voronoi diagram--are explored, with the slngle-parameter (re-scaled) gamma distribution playing a central role in the analytical fitting. Observational evidence for a cellular universe is briefly reviewed. A simulated Vp(2, 3) map with galaxies lying on the cell boundaries is constructed to compare, as regards general appearance, with the observed CfA map of galaxies and voids, the parameters of the simulation being so chosen as to reproduce the largest observed void size.