On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparis...On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.展开更多
Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of ...Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from th...A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solu- tion problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACID algorithm. Finally, the ACID with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.展开更多
Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing ...Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.展开更多
The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method...The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.展开更多
A method for solving systems of linear equations is presented based on direct decomposition of the coefficient matrix using the form LAX = LB = B’ . Elements of the reducing lower triangular matrix L can be determine...A method for solving systems of linear equations is presented based on direct decomposition of the coefficient matrix using the form LAX = LB = B’ . Elements of the reducing lower triangular matrix L can be determined using either row wise or column wise operations and are demonstrated to be sums of permutation products of the Gauss pivot row multipliers. These sums of permutation products can be constructed using a tree structure that can be easily memorized or alternatively computed using matrix products. The method requires only storage of the L matrix which is half in size compared to storage of the elements in the LU decomposition. Equivalence of the proposed method with both the Gauss elimination and LU decomposition is also shown in this paper.展开更多
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robu...Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.展开更多
Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equation...Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived...We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.展开更多
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve...Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the numb...We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.展开更多
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalize...In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.展开更多
The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessar...The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.展开更多
Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with exp...Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.展开更多
文摘On the stability analysis of large-scale systems by Lyapunov functions, it is necessary to determine the stability of vector comparison equations. For discrete systems, only the stability of linear autonomous comparison equations was studied in the past. In this paper, various criteria of stability for discrete nonlinear autonomous comparison equations are completely established. Among them, a criterion for asymptotic stability is not only sufficient, but also necessary, from which a criterion on the function class C, is derived. Both of them can be used to determine the unexponential stability, even in the large, for discrete nonlinear (autonomous or nonautonomous) systems. All the criteria are of simple algebraic forms and can be readily used.
文摘Hessian matrices are square matrices consisting of all possible combinations of second partial derivatives of a scalar-valued initial function. As such, Hessian matrices may be treated as elementary matrix systems of linear second-order partial differential equations. This paper discusses the Hessian and its applications in optimization, and then proceeds to introduce and derive the notion of the Jaffa Transform, a new linear operator that directly maps a Hessian square matrix space to the initial corresponding scalar field in nth dimensional Euclidean space. The Jaffa Transform is examined, including the properties of the operator, the transform of notable matrices, and the existence of an inverse Jaffa Transform, which is, by definition, the Hessian matrix operator. The Laplace equation is then noted and investigated, particularly, the relation of the Laplace equation to Poisson’s equation, and the theoretical applications and correlations of harmonic functions to Hessian matrices. The paper concludes by introducing and explicating the Jaffa Theorem, a principle that declares the existence of harmonic Jaffa Transforms, which are, essentially, Jaffa Transform solutions to the Laplace partial differential equation.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
文摘A novel method based on ant colony optimization (ACO), algorithm for solving the ill-conditioned linear systems of equations is proposed. ACO is a parallelized bionic optimization algorithm which is inspired from the behavior of real ants. ACO algorithm is first introduced, a kind of positive feedback mechanism is adopted in ACO. Then, the solu- tion problem of linear systems of equations was reformulated as an unconstrained optimization problem for solution by an ACID algorithm. Finally, the ACID with other traditional methods is applied to solve a kind of multi-dimensional Hilbert ill-conditioned linear equations. The numerical results demonstrate that ACO is effective, robust and recommendable in solving ill-conditioned linear systems of equations.
基金Project supported by the National Natural Science Foundation of China(Nos.5130926141030747+3 种基金41102181and 51121005)the National Basic Research Program of China(973 Program)(No.2011CB013503)the Young Teachers’ Initial Funding Scheme of Sun Yat-sen University(No.39000-1188140)
文摘Fast solving large-scale linear equations in the finite element analysis is a classical subject in computational mechanics. It is a key technique in computer aided engineering (CAE) and computer aided manufacturing (CAM). This paper presents a high-efficiency improved symmetric successive over-relaxation (ISSOR) preconditioned conjugate gradient (PCG) method, which maintains lelism consistent with the original form. Ideally, the by 50% as compared with the original algorithm. the convergence and inherent paralcomputation can It is suitable for be reduced nearly high-performance computing with its inherent basic high-efficiency operations. By comparing with the numerical results, it is shown that the proposed method has the best performance.
文摘The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.
文摘A method for solving systems of linear equations is presented based on direct decomposition of the coefficient matrix using the form LAX = LB = B’ . Elements of the reducing lower triangular matrix L can be determined using either row wise or column wise operations and are demonstrated to be sums of permutation products of the Gauss pivot row multipliers. These sums of permutation products can be constructed using a tree structure that can be easily memorized or alternatively computed using matrix products. The method requires only storage of the L matrix which is half in size compared to storage of the elements in the LU decomposition. Equivalence of the proposed method with both the Gauss elimination and LU decomposition is also shown in this paper.
文摘Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.
文摘Many systems of fuzzy linear equations do not have solutions when the solution concept is based on α cuts and interval arithmetic. In this paper,we establish the relations between the systems of fuzzy linear equations and the possibilistic linear programming problems and present an alternative method of solving the systems of fuzzy linear equations.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
文摘We investigate strong stability preserving(SSP)implicit-explicit(IMEX)methods for partitioned systems of differential equations with stiff and nonstiff subsystems.Conditions for order p and stage order q=p are derived,and characterization of SSP IMEX methods is provided following the recent work by Spijker.Stability properties of these methods with respect to the decoupled linear system with a complex parameter,and a coupled linear system with real parameters are also investigated.Examples of methods up to the order p=4 and stage order q—p are provided.Numerical examples on six partitioned test systems confirm that the derived methods achieve the expected order of convergence for large range of stepsizes of integration,and they are also suitable for preserving the accuracy in the stiff limit or preserving the positivity of the numerical solution for large stepsizes.
基金supported by the National Natural Science Foundation of China(Grant No.12031004 and Grant No.12271474,61877054)the Fundamental Research Foundation for the Central Universities(Project No.K20210337)+1 种基金the Zhejiang University Global Partnership Fund,188170+194452119/003partially funded by a state task of Russian Fundamental Investigations(State Registration No.FFSG-2024-0002)。
文摘Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
文摘We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
基金This work was supported by National Natural Science Foundation of China(No.60710002)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT).
文摘In this paper, the normal Luenberger function observer design for second-order descriptor linear systems is considered. It is shown that the main procedure of the design is to solve a so-called second-order generalized Sylvester-observer matrix equation. Based on an explicit parametric solution to this equation, a parametric solution to the normal Luenberger function observer design problem is given. The design degrees of freedom presented by explicit parameters can be further utilized to achieve some additional design requirements.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10932002,11172120,and 11202090)
文摘The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
基金This work was supported by the National Natural Science Foundation of China (No. 60274058).
文摘Some preliminary results on strict bounded real lemma for time-varying continuous linear systems are proposed, where uncertainty in initial conditions, terminal cost and extreme of the cost function are dealt with explicitly. Based on these results, a new recursive approach is proposed in the necessity proof of strict bounded real lemma for generalized linear system with finite discrete jumps.