期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation on mechanical exhaust of cabin fire in large-space building 被引量:3
1
作者 SHI CongLing ZHONG MaoHua HUO Ran 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第1期65-76,共12页
A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreadi... A calculation model for mechanical exhaust rate in large-space building in the case of cabin fire is proposed through theoretical analysis. Full-scale hot smoke tests are then performed to study the cabin fire spreading to large-space building at dif- ferent air change rates (ACH). The result indicates that under the standard pre- scribed ACH, the effective air heights in the large spaces are respectively 6, 4 and 2 m in the case of cabin fires of 0.34, 0.67 and 1 MW. Numerical experiment has been conducted using self-developing two-zone model. The smoke control effi- ciency is compared by varying the large space’s air change rate in the case of cabin fires ranging from 0.25 to 4 MW. The calculation results show that the air change rates are respectively 3, 6, 10 and 10 ACH when the smoke layer is kept above 5 m, indicating that the centralized exhaust rates far exceed the standard prescribed value. To address this problem, a set of subsidiary distributed mechanical exhaust installing in the cabin with high fire loads is proposed. The simulation shows that both from the safety and economy point of view, the adoption of subsidiary dis- tributed cabin exhaust design may effectively reduce the demand of designed air change rate for large-space building. 展开更多
关键词 large-space CABIN MECHANICAL EXHAUST SPILL PLUME transfer LAG time
原文传递
Behaviors of overlying strata in extra-thick coal seams using top-coalcaving method 被引量:7
2
作者 Bin Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期238-247,共10页
Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-co... Accidents such as support failure and excessive deformation of roadways due to drastic changes in strata behaviors are frequently reported when mining the extra-thick coal seams Nos.3e5 in Datong coal mine with top-coal caving method,which significantly hampers the mine's normal production.To understand the mechanism of strata failure,this paper presented a structure evolution model with respect to strata behaviors.Then the behaviors of strata overlying the extra-thick coal seams were studied with the combined method of theoretical analysis,physical simulation,and field measurement.The results show that the key strata,which are usually thick-hard strata,play an important role in overlying movement and may influence the mining-induced strata behaviors in the working face using top-coal caving method.The structural model of far-field key strata presents a 'masonry beam' type structure when'horizontal O-X' breakage type happens.The rotational motion of the block imposed radial compressive stress on the surrounding rock mass of the roadway.This can induce excessive deformation of roadway near the goaf.Besides,this paper proposed a pre-control technology for the hard roof based on fracture holes and underground roof pre-splitting.It could effectively reduce stress concentration and release the accumulated energy of the strata,when mining underground coal resources with top-coal caving method. 展开更多
关键词 Extra-thick coal seam Datong mining area large-space structure Near-and far-field strata Strata behavior Key strata
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部