The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechan...The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.展开更多
In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lat...In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis of clarification for the stress environment of gob-side entry retaining, and the equation of roof given deformation and the balance judgment for fracture block were obtained. The optimal cantilever length was proposed based on the comparison of roof structural characteristics and the stress, deformation law of surrounding rocks under six different cantilever lengths by numerical simulation method. Double stress peaks exist on the sides of gob-side entry retaining and the entry located in the low stress area. The pressure of gob-side entry retaining can be relieved by reducing the cantilever length. However, due to the impact of arch structure of rock beam, unduly short cantilever would result in insufficient pressure relief and unduly long cantilever would bring larger roof stress which results in intense deformation. Therefore, there is optimal cantilever length, which was 7-8 m in this project that enables to achieve the minimum deformation and the most stabilized rock structure of entry retaining. An engineering case of gob-side entry retaining with the direct coverage of 10 m thick hard limestone roof was put forward, and the measured data verified the reasonability of conclusion.展开更多
The paper presents the influence of varying immediate roof thickness on the lower strong roof strata movement and failure pattern in longwall coal mining with large mining height. The investigation is based on 58 geol...The paper presents the influence of varying immediate roof thickness on the lower strong roof strata movement and failure pattern in longwall coal mining with large mining height. The investigation is based on 58 geological drill holes and hydraulic shield pressure measurements around the longwall Panel 42105 of the Buertai Mine in Inner Mongolia Autonomous Region, China. The longwall Panel 42105 is characterized by relatively soft immediate roof strata of varying thickness superposed by strong strata,herein defined as lower strong roof. A voussoir beam model is adopted to interpret the structural movement of the lower strong roof strata and shield pressure measurements. It is shown that when the immediate roof is relatively thick, the broken overlying lower strong roof tends to form a stable voussoir beam with previously broken layer, thus not exerting high pressure on the hydraulic shield and working face. When the immediate roof is relatively thin, the broken overlying lower strong roof tends to behave as a cantilever beam, thus exerting higher pressure on the hydraulic shield and working face. Comparison of model predictions with measured time-weighted average shield pressure(TWAP) shows good agreement.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50708030 and 90815021)
文摘The wind pressure pulse events, among the most important characteristics of wind pressure fluctuations on large-span flat roofs, were investigated by wind tunnel tests in this paper. Incorporating the formation mechanism of wind pressure pulse events, the peak over threshold method was employed to study properties of this kind of events. The event duration time, the energy contribution, the number of the pulse events, and the distribution of average peak pressure were calculated. Probability density functions of some typical samples in separation region were also given. Results show that the non-Gaussian roof pressure is strong in the flow separation region owing to the wind pressure pulse events. Evaluations of the extreme peak pressures, which can be determined by the peak over threshold method effectively, are important to the design of building cladding.
基金Project(51404251)supported by the National Natural Science Foundation of ChinaProject(BK20140198)supported by the Natural Science Foundation of Jiangsu Province of China+1 种基金Project(2014XT01)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘In order to explore the pressure relief and structure stability mechanism of lateral cantilever structure in the stope under the direct coverage of thick hard roof and its impact on the gob-side entry retaining, a lateral cantilever fractured structural mechanical model was established on the basis of clarification for the stress environment of gob-side entry retaining, and the equation of roof given deformation and the balance judgment for fracture block were obtained. The optimal cantilever length was proposed based on the comparison of roof structural characteristics and the stress, deformation law of surrounding rocks under six different cantilever lengths by numerical simulation method. Double stress peaks exist on the sides of gob-side entry retaining and the entry located in the low stress area. The pressure of gob-side entry retaining can be relieved by reducing the cantilever length. However, due to the impact of arch structure of rock beam, unduly short cantilever would result in insufficient pressure relief and unduly long cantilever would bring larger roof stress which results in intense deformation. Therefore, there is optimal cantilever length, which was 7-8 m in this project that enables to achieve the minimum deformation and the most stabilized rock structure of entry retaining. An engineering case of gob-side entry retaining with the direct coverage of 10 m thick hard limestone roof was put forward, and the measured data verified the reasonability of conclusion.
基金the fund supported by the National Natural Science Foundation of China(Grant No.U1261207)
文摘The paper presents the influence of varying immediate roof thickness on the lower strong roof strata movement and failure pattern in longwall coal mining with large mining height. The investigation is based on 58 geological drill holes and hydraulic shield pressure measurements around the longwall Panel 42105 of the Buertai Mine in Inner Mongolia Autonomous Region, China. The longwall Panel 42105 is characterized by relatively soft immediate roof strata of varying thickness superposed by strong strata,herein defined as lower strong roof. A voussoir beam model is adopted to interpret the structural movement of the lower strong roof strata and shield pressure measurements. It is shown that when the immediate roof is relatively thick, the broken overlying lower strong roof tends to form a stable voussoir beam with previously broken layer, thus not exerting high pressure on the hydraulic shield and working face. When the immediate roof is relatively thin, the broken overlying lower strong roof tends to behave as a cantilever beam, thus exerting higher pressure on the hydraulic shield and working face. Comparison of model predictions with measured time-weighted average shield pressure(TWAP) shows good agreement.