期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low-power YAG laser/arc hybrid welding of AZ-based Mg alloy
1
作者 HAO Xinfeng,and SONG Gang State Key Laboratory of Materials Modification,School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期67-72,共6页
The results of recent researches on the weldability of laser/arc hybrid welding of AZ-based Mg alloy was presented.Experiments were conducted with a low-power(500 W) Nd:YAG laser and a TIG arc.The synergic effects and... The results of recent researches on the weldability of laser/arc hybrid welding of AZ-based Mg alloy was presented.Experiments were conducted with a low-power(500 W) Nd:YAG laser and a TIG arc.The synergic effects and mechanical properties of the Mg joints by laser/arc hybrid welding were investigated,and the interaction mechanism of laser to arc was also discussed.The results show that Mg alloys can be easily welded in similar and dissimilar joints by laser/arc hybrid welding technique.With the arc power increasing,a higher weld depth is obtained,and the weld depths for laser and arc acting in combination(laser/arc) are two times higher than that of the total of laser and arc acting separately(laser+arc) in optimal conditions.The tensile strength and fatigue strength of the AZ31B joints welded by laser/arc hybrid process are equivalent to that of the based metal.Besides,the laser-induced plume/plasma images captured by high speed camera were used to study the interaction between laser beam and arc. 展开更多
关键词 Mg alloy laser/arc hybrid welding tensile strength fatigue strength
下载PDF
Hybrid laser/arc welding of thick high-strength steel in different configurations 被引量:4
2
作者 M. Mazar Atabaki N. Yazdian R. Kovacevic 《Advances in Manufacturing》 SCIE CAS CSCD 2018年第2期176-188,共13页
In this investigation, hybrid laser/arc welding (HLAW) was employed to join 8-mm-thick high-strength quenched and tempered steel (HSQTS) plates in the butt- and T-joint configurations. The influences of welding pa... In this investigation, hybrid laser/arc welding (HLAW) was employed to join 8-mm-thick high-strength quenched and tempered steel (HSQTS) plates in the butt- and T-joint configurations. The influences of welding parame- ters, such as laser power, welding speed, stand-off distance (SD) between the arc of gas metal arc welding, and the laser heat source on the weld quality and mechanical properties of joints, were studied to obtain non-porous and crack-free fully-penetrated welds. The weld microstructure, cross- section, and mechanical properties were evaluated by an optical microscope, and microhardness and tensile tests. In addition, a finite element model was developed to investigate the thermal history and molten pool geometry of the HLAW process to join the HSQTS. The numerical study demon- strated that the SD had a paramount role in good synergy between the heat sources and the stability of the keyhole. For the butt-joint configuration, the results showed that, at a higher welding speed (35 mm/s) and optimum SD between the arc and laser, a fully-penetrated sound weld could be achieved. A non-porous weld in the T-joint configuration was obtained at a lower welding speed (10 mm/s). Microstructural evaluations indicated that the formation of residual austenite and the continuous network of martensitic structure along the grain boundary through the heat affected zone were the primary reasons of the softening behavior of this area. This was confirmed by the sharp hardness reduction and failure behavior of the tensile coupons in this area. 展开更多
关键词 Hybrid laser/arc welding - Butt-joint T-JOINT Steel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部