Microstructure of the deepest zone of high speed steel W6Mo5Cr4V2(M2)melt after laser fu-sion was found to be so fine as the ehill zone of a solidified ingot.When narrower chill zoneformed,the long columnar dendrites ...Microstructure of the deepest zone of high speed steel W6Mo5Cr4V2(M2)melt after laser fu-sion was found to be so fine as the ehill zone of a solidified ingot.When narrower chill zoneformed,the long columnar dendrites grow into the melt and then the fine equiaxed cellularstructure appears in upper melt region nearly surface.The substructure of cellular grains anddendrites was observed to consist of martensite and retained austenile,while the carbides asM_6C_■ Cr_7C_3 and MC distributed at their boundaries.It is believed that the highermicrohardness up to HV_(0.1)=865-960 of the laser fused structure of the alloy is due to the oc-currence of martensite.展开更多
Polished fused silica samples were etched for different durations by using hydrofluoric(HF) acid solution with HF concentrations in an ultrasonic field. Surface and subsurface polishing residues and molecular struct...Polished fused silica samples were etched for different durations by using hydrofluoric(HF) acid solution with HF concentrations in an ultrasonic field. Surface and subsurface polishing residues and molecular structure parameters before and after the etching process were characterized by using a fluorescence microscope and infrared(IR) spectrometer, respectively. The laser induced damage thresholds(LIDTs) of the samples were measured by using pulsed nanosecond laser with wavelength of 355 nm. The results showed that surface and subsurface polishing residues can be effectively reduced by the acid etching process, and the LIDTs of fused silica are significantly improved. The etching effects increased with the increase of the HF concentration from 5 wt.% to 40 wt.%. The amount of polishing residues decreased with the increase of the etching duration and then kept stable. Simultaneously, with the increase of the etching time, the mechanical strength and molecular structure were improved.展开更多
To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are u...To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.展开更多
This paper mainly focuses on the influence of colloidal silica polishing on the damage performance of fused silica optics. In this paper, nanometer sized colloidal silica and micron sized ceria are used to polish fuse...This paper mainly focuses on the influence of colloidal silica polishing on the damage performance of fused silica optics. In this paper, nanometer sized colloidal silica and micron sized ceria are used to polish fused silica optics. The colloidal silica polished samples and ceria polished samples exhibit that the root-mean-squared (RMS) average surface roughness values are 0.7 nm and 1.0 rim, respectively. The subsurface defects and damage performance of the polished optics are analyzed and discussed. It is revealed that colloidal silica polishing will introduce much fewer absorptive con- taminant elements and subsurface damages especially no trailing indentation fracture. The 355-nm laser damage test reveals that each of the fused silica samples polished with colloidal silica has a much higher damage threshold and lower damage density than ceria polished samples. Colloidal silica polishing is potential in manufacturing high power laser optics.展开更多
Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of o...Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of optics in high fluence laser systems. However, the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge, which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics. In this work, the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica. The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Speeifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics. The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail展开更多
One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser i...One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail.展开更多
Time-dependent damage to fused silica induced by high frequency ultraviolet laser is investigated.Photothermal spectroscopy(PTS) and optical microscopy(OM) are utilized to characterize the evolution of damage pits wit...Time-dependent damage to fused silica induced by high frequency ultraviolet laser is investigated.Photothermal spectroscopy(PTS) and optical microscopy(OM) are utilized to characterize the evolution of damage pits with irradiation time.Experimental results describe that in the pre-damage stage of fused silica sample irradiated by 355-nm laser,the photothermal spectrum signal undergoes a process from scratch to metamorphism due to the absorption of laser energy by defects.During the visible damage stage of fused siliea sample,the photothermal spectrum signal decreases gradually from the maximum value because of the aggravation of the damage and the splashing of the material.This method can be used to estimate the operation lifetime of optical elements in engineering.展开更多
A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation ...A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation effect is studied.It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz.Furthermore,the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency,leading to less degradation of the wave-front quality of the conditioned sample.The energy density of the CO 2 laser beam is introduced for selecting the mitigation parameters.The damage sites can be successfully mitigated by increasing the energy density in a ramped way.Finally,the laser-induced damage threshold(LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot(0.23 mm 2) and a large spot(3.14 mm 2),separately.It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.展开更多
Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is empl...Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field mod- ulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (er), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.展开更多
Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm C...Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.展开更多
The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser ...The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO2laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO2laser secondary treatment.展开更多
The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For...The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For optical components,the ionization breakdown by laser is a main factor causing damage,particularly with laser plasma shock waves,which can cause large-scale fracture damage in fused silica.In this study,the damage morphology is experimentally investigated,and the characteristics of the damage point are obtained.In the theoretical study,the coupling and transmission of the shock wave in glass are investigated based on the finite element method.Thus,both the magnitude and the orientation of stress are obtained.The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone’s Raman spectrum.In addition,the influence of the glass thickness on the damage morphology is investigated.The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.展开更多
Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using h...Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.展开更多
Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage,which is always initiated on ceria polished optics, is one of the most important damage morphologies...Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage,which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics.In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities.Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.展开更多
The surface density changes of the central region of the sites treated by using the CO_2 laser-based non-evaporative damage mitigation for fused silica are investigated by attenuated total reflectance-Fourier transfor...The surface density changes of the central region of the sites treated by using the CO_2 laser-based non-evaporative damage mitigation for fused silica are investigated by attenuated total reflectance-Fourier transform infrared spectroscopy(ATR-FTIR).The ATR-FTIR peak shifts of the treated sites of fused silica are monitored to determine the changes of the corresponding density.For the quenching treated sites,the surface density is increased by(0.24±0.01)%compared with the initial density but the laser annealing by the exposure of a power ramp down after damage mitigation effectively suppresses the structural changes of treated sites,which could reduce the increase of the corresponding density to(0.08±0.01)%.The results provide sufficient evidence that the laser annealing by a power ramp down after damage mitigation has a positive effect on the control of the structural change induced by CO_2 laser-based damage mitigation.展开更多
The laser ablation technique, coupled with the use of quadrupole ICPMS equipment, proved a powerful tool for determination of trace elements in minerals. At the University of S?o Paulo, the technique was implemented f...The laser ablation technique, coupled with the use of quadrupole ICPMS equipment, proved a powerful tool for determination of trace elements in minerals. At the University of S?o Paulo, the technique was implemented for the study of minerals such as olivines, pyroxenes and biotites. The main problem to be tackled is the availability of proper multi-element reference materials usually prepared synthetically as glasses with various compositions by NIST and fused rock glasses by the Max Planck Institute (MPI) and USGS (basalts, andesite, quartz diorite, komatiites). The best tested ones are the NIST glasses, with good homogeneity and reliable compositional data for over 40 elements. Results are here presented that test additional RM’s. NIST 612 and 610 were used for calibration purposes. The best results were obtained for rock glasses USGS basalts BHVO-2G, BIR- 1G and BCR-2G (better homogeneity and recommended values). Our contribution tests especially the MPI komatiites glasses GOR-128 and GOR-132G, basalts KL-2G and ML-3BG, andesite StHs-6/ 80G and quartz diorite T-1G, discussing homogeneity issues and providing new data. There is a need for additional preparation of reliable reference materials.展开更多
The effect of defect density on the modulation of incident laser waves is investigated. First, based on the actual defect distribution in the subsurface of fused silica, a three-dimensional (3D) grid model of defect...The effect of defect density on the modulation of incident laser waves is investigated. First, based on the actual defect distribution in the subsurface of fused silica, a three-dimensional (3D) grid model of defect sites is constructed. The 3D finite-difference time-domain method is developed to solve the Maxwell equations. Then the electrical field intensity in the vicinity of the defect sites in the subsurface of fused silica is numerically calculated. The relationships between the maximal electrical field intensity in fused silica and the geometry of the defect sites are given. The simulated results reveal that the modulation becomes more remarkable with an increase of the defect density. In addition, the effect of the distribution mode of defects on modulation is discussed. Meanwhile, the underlying physical mechanism is analyzed in detail.展开更多
文摘Microstructure of the deepest zone of high speed steel W6Mo5Cr4V2(M2)melt after laser fu-sion was found to be so fine as the ehill zone of a solidified ingot.When narrower chill zoneformed,the long columnar dendrites grow into the melt and then the fine equiaxed cellularstructure appears in upper melt region nearly surface.The substructure of cellular grains anddendrites was observed to consist of martensite and retained austenile,while the carbides asM_6C_■ Cr_7C_3 and MC distributed at their boundaries.It is believed that the highermicrohardness up to HV_(0.1)=865-960 of the laser fused structure of the alloy is due to the oc-currence of martensite.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2016M592709)the National Natural Science Foundation of China(Grant No.51535003)
文摘Polished fused silica samples were etched for different durations by using hydrofluoric(HF) acid solution with HF concentrations in an ultrasonic field. Surface and subsurface polishing residues and molecular structure parameters before and after the etching process were characterized by using a fluorescence microscope and infrared(IR) spectrometer, respectively. The laser induced damage thresholds(LIDTs) of the samples were measured by using pulsed nanosecond laser with wavelength of 355 nm. The results showed that surface and subsurface polishing residues can be effectively reduced by the acid etching process, and the LIDTs of fused silica are significantly improved. The etching effects increased with the increase of the HF concentration from 5 wt.% to 40 wt.%. The amount of polishing residues decreased with the increase of the etching duration and then kept stable. Simultaneously, with the increase of the etching time, the mechanical strength and molecular structure were improved.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2008AA8040508)the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806)
文摘To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.
文摘This paper mainly focuses on the influence of colloidal silica polishing on the damage performance of fused silica optics. In this paper, nanometer sized colloidal silica and micron sized ceria are used to polish fused silica optics. The colloidal silica polished samples and ceria polished samples exhibit that the root-mean-squared (RMS) average surface roughness values are 0.7 nm and 1.0 rim, respectively. The subsurface defects and damage performance of the polished optics are analyzed and discussed. It is revealed that colloidal silica polishing will introduce much fewer absorptive con- taminant elements and subsurface damages especially no trailing indentation fracture. The 355-nm laser damage test reveals that each of the fused silica samples polished with colloidal silica has a much higher damage threshold and lower damage density than ceria polished samples. Colloidal silica polishing is potential in manufacturing high power laser optics.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010J045)the National Natural Science Fundation of China and the China Academy of Engineering Physics United Foundation (NSAF) (Grant No. 11076008)the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806)
文摘Local CO2 laser treatment has proved to be an effective method to prevent the 351-nm laser-induced damage sites in a fused silica surface from exponentially growing, which is responsible for limiting the lifetime of optics in high fluence laser systems. However, the CO2 laser induced ablation crater is often surrounded by a raised rim at the edge, which can also result in the intensification of transmitted ultraviolet light that may damage the downstream optics. In this work, the three-dimensional finite-difference time-domain method is developed to simulate the distribution of electrical field intensity in the vicinity of the CO2 laser mitigated damage site located in the exit subsurface of fused silica. The simulated results show that the repaired damage sites with raised rims cause more notable modulation to the incident laser than those without rims.Speeifically,we present a theoretical model of using dimpled patterning to control the rim structure around the edge of repaired damage sites to avoid damage to downstream optics. The calculated results accord well with previous experimental results and the underlying physical mechanism is analysed in detail
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2008AA8040508)the Youth Foundation of University of Science and Technology of China (Grant Nos.L08010401JX0834 and L08010401JX0806)the Fundamental Research Funds for the Central Universities of China
文摘One of the main factors of laser induced damage is the modulation to incident laser which is caused by the defect in the subsurface of the fused silica. In this work, the repaired damage site irradiated by CO2 laser is simplified to a Gaussian rotation according to the corresponding experimental results. Then, the three-dimensional finite-difference time-domain method is employed to simulate the electric field intensity distribution in the vicinity of this kind of defect in fused silica front subsurface. The simulated results show that the modulation is notable, the Emax is about 2.6 times the irradiated electric field intensity in the fused silica with the damage site (the width is 1.5 μm and depth is 2.3 μm) though the damage site is repaired by CO2 laser. The phenomenon and the theoretical result of the annular laser enhancement existed on the rear surface are first verified effectively, which agrees well with the corresponding experimental results. The relations between the maximal electric field intensity in fused silica with defect depth and width are given respectively. Meanwhile, the corresponding physical mechanism is analysed theoretically in detail.
基金Project supported by the National Natural Science Foundation of China(Grant No.51402173)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-15-099A1).
文摘Time-dependent damage to fused silica induced by high frequency ultraviolet laser is investigated.Photothermal spectroscopy(PTS) and optical microscopy(OM) are utilized to characterize the evolution of damage pits with irradiation time.Experimental results describe that in the pre-damage stage of fused silica sample irradiated by 355-nm laser,the photothermal spectrum signal undergoes a process from scratch to metamorphism due to the absorption of laser energy by defects.During the visible damage stage of fused siliea sample,the photothermal spectrum signal decreases gradually from the maximum value because of the aggravation of the damage and the splashing of the material.This method can be used to estimate the operation lifetime of optical elements in engineering.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2008AA8040508)Foundation for Young Scholars of University of Electronic Science and Technology of China(Grant No.L08010401JX0806)+2 种基金the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.11076008)the Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2011J043)the Sichuan Provincial Young Scientists Foundation,China(Grant No.2010JQ0006)
文摘A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm.The influence of the pulse frequency of a CO 2 laser on the mitigation effect is studied.It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz.Furthermore,the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency,leading to less degradation of the wave-front quality of the conditioned sample.The energy density of the CO 2 laser beam is introduced for selecting the mitigation parameters.The damage sites can be successfully mitigated by increasing the energy density in a ramped way.Finally,the laser-induced damage threshold(LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot(0.23 mm 2) and a large spot(3.14 mm 2),separately.It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.
基金supported by the National Natural Science Foundation of China(Grant No.61178018)the Ph.D.Funding Support Program of Education Ministry of China(Grant No.20110185110007)
文摘Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field mod- ulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (er), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. 11076008)the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2011J043)+1 种基金the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. 8010401JX0806)the Young Scientists Foundation of Sichuan Province of China (Grant No. 2010JQ0006)
文摘Two methods:high-power,short-time,single-shot irradiation(Method A) and low-power,long-time,multi-shot irradiation(Method B) are investigated to mitigate the UV damage growth in fused silica by using a 10.6-μm CO2 laser.To verify the mitigation effect of the two methods,the laser induced damage thresholds(LIDTs) of the mitigated sites are tested with a 355-nm,6.4-ns Nd:YAG laser,and the light modulation of the mitigation sites are tested with a 351-nm continuous Nd:YLF laser.The mitigated damaged sites treated with the two methods have almost the same LIDTs,which can recover to the level of pristine material.Compared with Method A,Method B produces mitigated sites with low crater depth and weak light modulation.In addition,there is no raised rim or re-deposited debris formed around the crater edge for Method B.Theoretical calculation is utilized to evaluate the central temperature of the CO2 laser beam irradiated zone and the radius of the crater.It is indicated that the calculated results are consistent with the experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.61505170,61505171,and 51535003)the Joint Fund of the National Natural Science Foundation of China+1 种基金the Chinese Academy of Engineering Physics(Grant No.U1530109)the China Postdoctoral Science Foundation(Grant No.2016M592709)
文摘The ablation debris and raised rim, as well as residual stress and deep crater will be formed during the mitigation of damage site with a CO2 laser irradiation on fused silica surface, which greatly affects the laser damage resistance of optics. In this study, the experimental study combined with numerical simulation is utilized to investigate the effect of the secondary treatment on a mitigated site by CO2laser irradiation. The results indicate that the ablation debris and the raised rim can be completely eliminated and the depth of crater can be reduced. Notable results show that the residual stress of the mitigation site after treatment will reduce two-thirds of the original stress. Finally, the elimination and the controlling mechanism of secondary treatment on the debris and raised rim, as well as the reasons for changing the profile and stress are analyzed. The results can provide a reference for the optimization treatment of mitigation sites by CO2laser secondary treatment.
基金Project supported by the Key Research and Development Projects of Science and Technology Department of Sichuan Province,China(Grant No.2018FZ0032)the National Natural Science Foundation of China(Grant No.U1730141)
文摘The damage to the rear surface of fused silica under the action of high power laser is more severe than that incurred by the front surface,which hinders the improvement in the energy of the high power laser device.For optical components,the ionization breakdown by laser is a main factor causing damage,particularly with laser plasma shock waves,which can cause large-scale fracture damage in fused silica.In this study,the damage morphology is experimentally investigated,and the characteristics of the damage point are obtained.In the theoretical study,the coupling and transmission of the shock wave in glass are investigated based on the finite element method.Thus,both the magnitude and the orientation of stress are obtained.The damage mechanism of the glass can be explained based on the fracture characteristics of glass under different stresses and also on the variation of the damage zone’s Raman spectrum.In addition,the influence of the glass thickness on the damage morphology is investigated.The results obtained in this study can be used as a reference in understanding the characteristics and mechanism of damage characteristics induced by laser plasma shock waves.
基金supported by the National Natural Science Foundation of China(Nos.11690041,11805244,and 11675233)the Opening Project of Science and Technology on Reliability Physics and Application Technology of the Electronic Component Laboratory(No.ZHD 201604)
文摘Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.
文摘Laser-induced damage in fused silica optics greatly restricts the performances of laser facilities. Gray haze damage,which is always initiated on ceria polished optics, is one of the most important damage morphologies in fused silica optics.In this paper, the laser-induced gray haze damages of four fused silica samples polished with CeO2, Al2O3, ZrO2, and colloidal silica slurries are investigated. Four samples all present gray haze damages with much different damage densities.Then, the polishing-induced contaminant and subsurface damages in four samples are analyzed. The results reveal that the gray haze damages could be initiated on the samples without Ce contaminant and are inclined to show a tight correlation with the shallow subsurface damages.
文摘The surface density changes of the central region of the sites treated by using the CO_2 laser-based non-evaporative damage mitigation for fused silica are investigated by attenuated total reflectance-Fourier transform infrared spectroscopy(ATR-FTIR).The ATR-FTIR peak shifts of the treated sites of fused silica are monitored to determine the changes of the corresponding density.For the quenching treated sites,the surface density is increased by(0.24±0.01)%compared with the initial density but the laser annealing by the exposure of a power ramp down after damage mitigation effectively suppresses the structural changes of treated sites,which could reduce the increase of the corresponding density to(0.08±0.01)%.The results provide sufficient evidence that the laser annealing by a power ramp down after damage mitigation has a positive effect on the control of the structural change induced by CO_2 laser-based damage mitigation.
文摘The laser ablation technique, coupled with the use of quadrupole ICPMS equipment, proved a powerful tool for determination of trace elements in minerals. At the University of S?o Paulo, the technique was implemented for the study of minerals such as olivines, pyroxenes and biotites. The main problem to be tackled is the availability of proper multi-element reference materials usually prepared synthetically as glasses with various compositions by NIST and fused rock glasses by the Max Planck Institute (MPI) and USGS (basalts, andesite, quartz diorite, komatiites). The best tested ones are the NIST glasses, with good homogeneity and reliable compositional data for over 40 elements. Results are here presented that test additional RM’s. NIST 612 and 610 were used for calibration purposes. The best results were obtained for rock glasses USGS basalts BHVO-2G, BIR- 1G and BCR-2G (better homogeneity and recommended values). Our contribution tests especially the MPI komatiites glasses GOR-128 and GOR-132G, basalts KL-2G and ML-3BG, andesite StHs-6/ 80G and quartz diorite T-1G, discussing homogeneity issues and providing new data. There is a need for additional preparation of reliable reference materials.
基金Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J045)the National Natural Science Fundation of China and the China Academy of Engineering Physics United Foundation (NSFA) (Grant No. 11076008)
文摘The effect of defect density on the modulation of incident laser waves is investigated. First, based on the actual defect distribution in the subsurface of fused silica, a three-dimensional (3D) grid model of defect sites is constructed. The 3D finite-difference time-domain method is developed to solve the Maxwell equations. Then the electrical field intensity in the vicinity of the defect sites in the subsurface of fused silica is numerically calculated. The relationships between the maximal electrical field intensity in fused silica and the geometry of the defect sites are given. The simulated results reveal that the modulation becomes more remarkable with an increase of the defect density. In addition, the effect of the distribution mode of defects on modulation is discussed. Meanwhile, the underlying physical mechanism is analyzed in detail.