The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential...The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.展开更多
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ...Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.展开更多
A liquid-droplet technique was investigated to fabricate thin wall hollow glass microspheres (HGM) used in laser fusion experiments on Shen Guang II. Glass-forming compositions, operating conditions of the droplet gen...A liquid-droplet technique was investigated to fabricate thin wall hollow glass microspheres (HGM) used in laser fusion experiments on Shen Guang II. Glass-forming compositions, operating conditions of the droplet generator and the vertical multiple-zone furnace were optimized. Thin wall HGM with diameters of about 100, 200, and 520 pm were fabricated, whose failure pressures, gas retention properties for D2, and chemical durability were all characterized. The results of the fusion experiments show that the HGM targets are quite satisfactory and the highest neutron yields obtained are 4 × 109.展开更多
基金supported by the National Natural Science Foundation of China(52327806 and U22A6006).
文摘The high-resolution and nondestructive co-reference measurement of the inner and outer threedimensional(3D)surface profiles of laser fusion targets is difficult to achieve.In this study,we propose a laser differential confocal(LDC)–atomic force probe(AFP)method to measure the inner and outer 3D surface profiles of laser fusion targets at a high resolution.This method utilizes the LDC method to detect the deflection of the AFP and exploits the high spatial resolution of the AFP to enhance the spatial resolution of the outer profile measurement.Nondestructive and co-reference measurements of the inner profile of a target were achieved using the tomographic characteristics of the LDC method.Furthermore,by combining multiple repositionings of the target using a horizontal slewing shaft,the inner and outer 3D surface profiles of the target were obtained,along with a power spectrum assessment of the entire surface.The experimental results revealed that the respective axial and lateral resolutions of the outer profile measurement were 0.5 and 1.3 nm,while the respective axial and lateral resolutions of the inner profile measurement were 2.0 nm and approximately 400.0 nm.The repeatabilities of the rootmean-square deviation measurements for the outer and inner profiles of the target were 2.6 and 2.4 nm,respectively.We believe our study provides a promising method for the high-resolution and nondestructive co-reference measurement of the inner and outer 3D profiles of laser fusion targets.
基金University Doctor Subject Foundation of China (20060699024)
文摘Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.
基金This work was supported by the Pre-research Foundation of Chinese Academy of Engineering Physics (Grant No. 990553) .
文摘A liquid-droplet technique was investigated to fabricate thin wall hollow glass microspheres (HGM) used in laser fusion experiments on Shen Guang II. Glass-forming compositions, operating conditions of the droplet generator and the vertical multiple-zone furnace were optimized. Thin wall HGM with diameters of about 100, 200, and 520 pm were fabricated, whose failure pressures, gas retention properties for D2, and chemical durability were all characterized. The results of the fusion experiments show that the HGM targets are quite satisfactory and the highest neutron yields obtained are 4 × 109.