Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heat...Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heating system parameters have significant effects on the characteristics of the hardened surface. To appropriately exploit the benefits presented by the laser surface hardening, it is necessary to develop a comprehensive strategy to control the process variables in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of hardness profile predictive modeling and experimental validation for spline shafts using a 3D model. The proposed approach is based on thermal and metallurgical simulations, experimental investigations and statistical analysis to build the prediction model. The simulation of the hardening process is carried out using 3D finite element model on commercial software. The model is used to estimate the temperature distribution and the hardness profile attributes for various hardening parameters, such as laser power, shaft rotation speed and scanning speed. The experimental calibration and validation of the model are performed on a 3 kW Nd:Yag laser system using a structured experimental design and confirmed statistical analysis tools. The results reveal that the model can provide not only a consistent and accurate prediction of temperature distribution and hardness profile characteristics under variable hardening parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The modelling results show a great concordance between predicted and measured values for the dimensions of hardened zones.展开更多
A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization.The enthalpy method was applied to solve this two-phase ax...A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization.The enthalpy method was applied to solve this two-phase axisymmetrical mehing problem.Computational results of tempera ture fields were obtained,which provide useful information to practical lair treatment processing. The validity of enthalpy method in solving such problems is presented.展开更多
Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical propertie...Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To adequately exploit the benefits presented by the laser heating method, it is necessary to develop a comprehensive strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive approach used to build a simplified model for predicting the hardness profile. A finite element method based prediction model for AISI 4340 steel is investigated. A circular shape with a Gaussian distribution is used for modeling the laser heat source. COMSOL MULTIPHYSICS software is used to solve the heat transfer equations, estimate the temperature distribution in the part and consequently predict the hardness profile. A commercial 3 kW Nd:Yag laser system is combined to a structured experimental design and confirmed statistical analysis tools for conducting the experimental calibration and validation of the model. The results reveal that the model can effectively lead to a consistent and accurate prediction of the hardness profile characteristics under variable hardening parameters and conditions. The results show great concordance between predicted and measured values for the dimensions of hardened and melted zones.展开更多
Materials composed of ultrafine particles in the range of 1—50 nm with dean surfaces or uniform cover layers are called nanocrystalline materials. Their properties are much superior to coarse-grained materials with t...Materials composed of ultrafine particles in the range of 1—50 nm with dean surfaces or uniform cover layers are called nanocrystalline materials. Their properties are much superior to coarse-grained materials with the same composition, and new structures may be formed. For example, the properties of nanocrystalline TiO<sub>2</sub> are much higher than coarse-展开更多
The single crystal scintillating optical fibers acting as the scintillators and light conductors show potential application in scintillating fiber array detectors with high spatial resolution.In this paper we report t...The single crystal scintillating optical fibers acting as the scintillators and light conductors show potential application in scintillating fiber array detectors with high spatial resolution.In this paper we report the growth of 0.2 at%Ce:Y_(3)Al_(5)O_(12) single crystal fiber.The crystalline phase,surface morphology of the axialsection and cro ss-section,optical and scintillation properties of the as-grown fiber were investigated.The Ce:Y_(3)Al_(5)O_(12) single crystal fiber has a pure YAG phase,a uniform distribution of cerium in the axialsection and cross-section surface.Emission spectrum is composed of broad bands ranging from 440 to700 nm.In addition,the single crystal fiber has a high light yield of 26115±2000 photons/MeV,low energy resolution of 9.44%@662 keV and decay time of a fast component of 78 ns and a slow component of 301 ns.The intensity ratio of fast to slow components is roughly 8:1.展开更多
文摘Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heating system parameters have significant effects on the characteristics of the hardened surface. To appropriately exploit the benefits presented by the laser surface hardening, it is necessary to develop a comprehensive strategy to control the process variables in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of hardness profile predictive modeling and experimental validation for spline shafts using a 3D model. The proposed approach is based on thermal and metallurgical simulations, experimental investigations and statistical analysis to build the prediction model. The simulation of the hardening process is carried out using 3D finite element model on commercial software. The model is used to estimate the temperature distribution and the hardness profile attributes for various hardening parameters, such as laser power, shaft rotation speed and scanning speed. The experimental calibration and validation of the model are performed on a 3 kW Nd:Yag laser system using a structured experimental design and confirmed statistical analysis tools. The results reveal that the model can provide not only a consistent and accurate prediction of temperature distribution and hardness profile characteristics under variable hardening parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The modelling results show a great concordance between predicted and measured values for the dimensions of hardened zones.
基金the National Natural Science Foundation of China and the Chinese Academy of Sciences
文摘A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization.The enthalpy method was applied to solve this two-phase axisymmetrical mehing problem.Computational results of tempera ture fields were obtained,which provide useful information to practical lair treatment processing. The validity of enthalpy method in solving such problems is presented.
文摘Laser surface hardening becomes one of the most effective techniques used to enhance wear and fatigue resistance of mechanical parts. The characteristics of the hardened surface depend on the physicochemical properties of the material as well as the heating system parameters. To adequately exploit the benefits presented by the laser heating method, it is necessary to develop a comprehensive strategy to control the process parameters in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. This study presents a comprehensive approach used to build a simplified model for predicting the hardness profile. A finite element method based prediction model for AISI 4340 steel is investigated. A circular shape with a Gaussian distribution is used for modeling the laser heat source. COMSOL MULTIPHYSICS software is used to solve the heat transfer equations, estimate the temperature distribution in the part and consequently predict the hardness profile. A commercial 3 kW Nd:Yag laser system is combined to a structured experimental design and confirmed statistical analysis tools for conducting the experimental calibration and validation of the model. The results reveal that the model can effectively lead to a consistent and accurate prediction of the hardness profile characteristics under variable hardening parameters and conditions. The results show great concordance between predicted and measured values for the dimensions of hardened and melted zones.
基金Project supported by the National Natural Science Foundation of China.
文摘Materials composed of ultrafine particles in the range of 1—50 nm with dean surfaces or uniform cover layers are called nanocrystalline materials. Their properties are much superior to coarse-grained materials with the same composition, and new structures may be formed. For example, the properties of nanocrystalline TiO<sub>2</sub> are much higher than coarse-
基金Project supported by the Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20170019)International Partnership Program of Chinese Academy of Sciences(121631KYSB20180045)+2 种基金National Natural Science Foundation of China(51872309,U1832106,62005302)Science and Technology Commission of Shanghai Municipality(20511107400,ZJ2020-ZD-005)Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Micro structures(SKL201904)。
文摘The single crystal scintillating optical fibers acting as the scintillators and light conductors show potential application in scintillating fiber array detectors with high spatial resolution.In this paper we report the growth of 0.2 at%Ce:Y_(3)Al_(5)O_(12) single crystal fiber.The crystalline phase,surface morphology of the axialsection and cro ss-section,optical and scintillation properties of the as-grown fiber were investigated.The Ce:Y_(3)Al_(5)O_(12) single crystal fiber has a pure YAG phase,a uniform distribution of cerium in the axialsection and cross-section surface.Emission spectrum is composed of broad bands ranging from 440 to700 nm.In addition,the single crystal fiber has a high light yield of 26115±2000 photons/MeV,low energy resolution of 9.44%@662 keV and decay time of a fast component of 78 ns and a slow component of 301 ns.The intensity ratio of fast to slow components is roughly 8:1.