This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shap...Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.展开更多
Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degr...Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.展开更多
In-situ layerwise imaging measurement of laser powder bed fusion(LPBF)provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity.Using high-resolution camera...In-situ layerwise imaging measurement of laser powder bed fusion(LPBF)provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity.Using high-resolution camera layerwise imaging and image processing algorithms to monitor fusion area and powder bed geometric defects has been studied by many researchers,which successfully monitored the contours of components and evaluated their accuracy.However,research for the methods of in-situ 3D contour measurement or component edge warping identification is rare.In this study,a 3D contour mea-surement method combining gray intensity and phase difference is proposed,and its accuracy is verified by designed experiments.The results show that the high-precision of the 3D contours can be achieved by the constructed energy minimization function.This method can detect the deviations of common ge-ometric features as well as warpage at LPBF component edges,and provides fundamental data for in-situ quality monitoring tools.展开更多
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl...It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.展开更多
A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and su...A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.展开更多
Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were ...Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were discussed. The result of phase analysis( XRD) and microstructure investigation( SEM) showed that the coatings consist mainly of Cr_3 C_2,Cr_7 C_3 and γ-( Ni,Cr),which are consistent with the thermodynamic calculations. The wear morphology of the coatings was also examined. The results of dry sliding wear tests of different Cr/C ratio show that the wear resistances of the Cr_3 C_2-reinforced coating,respectively,are 13. 4,9. 5,9. 1 and 6. 5 times higher than that of the substrate and the main wear mechanisms of the coatings are adhesion and abrasive wear with slight oxidation.展开更多
In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structur...In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.展开更多
The process of laser cladding procedure has a closely relation with properties of composite cladding layers. When the input power of laser is certain, the low scanning velocity makes substrate with ahead of laser beam...The process of laser cladding procedure has a closely relation with properties of composite cladding layers. When the input power of laser is certain, the low scanning velocity makes substrate with ahead of laser beam heat for a long time, which worsens interface bonding from surface oxidized; much higher scanning velocity makes the powder’s synthesis near substrate uncompleted fully, the remained powder in interface worsens interface bonding as well. Otherwise, the input specific energy of laser influences on in-situ synthesis courses. If the input energy is lower, the synthesis is not completed fully. In addition, the low temperature effects not only restrict the dispersion of particle leading uneven distribution of TiC, but also form some regions consisting of Al and Al 3Ti.展开更多
In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and ge...In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.展开更多
The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and te...The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.展开更多
Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,...Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.展开更多
Laser powder bed fusion(LPBF)is a highly dynamic and complex physical process,and single-track de-fects tend to accumulate into non-negligible internal defects of parts.The nickel-based superalloy single track was fab...Laser powder bed fusion(LPBF)is a highly dynamic and complex physical process,and single-track de-fects tend to accumulate into non-negligible internal defects of parts.The nickel-based superalloy single track was fabricated by LPBF,and its plume and spattering behavior were monitored in situ and recorded in real time based on image recognition and tracking in this study.The relationship among laser energy density,melt flow,plume and spattering behavior during LPBF was discussed.Volumetric energy density had limitations as a design parameter for LPBF.However,we found that plume and spattering behavior can be used as real-time design parameters for the processing of LPBF parts and implemented the initial velocity statistics for LPBF single-track spattering based on the centroid extraction algorithm.The influ-ence of melt flow evolution paths on the spattering and plume behavior in three different melting modes was revealed,and a shift in plume behavior was found in the overlap region of the additive substrate.This study provides a new method for obtaining statistics of spattering-related physical quantities in the melting mode,which is beneficial for the development of processing methods to mitigate the instability of the LPBF process.展开更多
Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.T...Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.The microstructural and metallographic analyses were made by X-ray diffraction(XRD),optical microscope(OM),scanning electron microscopy(SEM),and electron probe microanalysis (EPMA).The results show that the coatings are mainly composed ofα-Ti cellular dendrites and a eutectic transformation product in which a large number of coarse and fine needle-shaped TiB and a few equiaxial TiC particles are homogeneously embedded.A thin dilution zone with a thickness of about 100μm is present at the interface,and it consists of a few TiB and TiC reinforcements and a large number of lamella grains growing parallel to the heat flux direction in which a thin needle-shaped microstructure exists due to the martensitic transformation. The microstructural evolution can be divided into four stages:precipitation and growth of primaryβ-Ti phase,formation of the binary eutecticumβ-Ti+TiB,formation of the ternary eutecticumβ-Ti+TiB+TiC,and solid transformation fromβ-Ti toα-Ti.展开更多
Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we succe...Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we successfully overcome the difficulty in sampling and dating ultra-low U-Pb ancient marine carbonates,which was previously untenable by isotope dilution(ID)methods.We developed the LA-MC-ICP-MS in situ U-Pb dating technique for ancient marine carbonates for the study of diagenesis-porosity evolution history in Sinian Dengying Formation,Sichuan Basin.By systematically dating of dolomitic cements from vugs,matrix pores and fractures,we found that the burial and diagenetic process of dolomite reservoirs in Sinian Dengying Formation was characterized by progressive filling-up of primary pores and epigenic dissolution vugs.The filling of vugs happened in three stages,early Caledonian,late Hercynian-Indosinian and Yanshanian-Himalayan,while the filling of matrix pores mainly took place in early Caledonian.The unfilled residual vugs,pores and fractures constitute the main reservoir sapce.Based on the above knowledge,we established the diagenesis-porosity evolution history of the dolomite reservoir in Sinian Dengying Formation,Sichuan Basin.These findings are highly consistent with the tectonic-burial and basin thermal histories of the study area.Our study confirmed the reliability of this in situ U-Pb dating technique,which provides an effective way for the investigation of diagenesis-porosity evolution history and evaluation of porosity in ancient marine carbonate reservoirs before hydrocarbon migration.展开更多
Fe-based alloy coatings reinforced by Ti( C, N) particles was produced through CO2 laser cladding technology. The microstructure of laser cladding coating was analyzed by means of X-ray diffraction ( XRD ), transm...Fe-based alloy coatings reinforced by Ti( C, N) particles was produced through CO2 laser cladding technology. The microstructure of laser cladding coating was analyzed by means of X-ray diffraction ( XRD ), transmission electron microscopy (TEM) , selected area electron diffraction ( SAED ) , scanning electron microscopy (SEM) and electron probe microscopic analyzer ( EPMA ). The mechanical property of the layer was measured by using microhardness meter. The results show that Ti ( C0. 3 N0. 7 ) panicles are introduced by an in-situ metallurgical reaction between TiN particle and graphite powder during laser cladding process. Titanium carbonitrides particles existed in the layer are fairly fine, ranging from 0. 1 μm to 5.0 μm, and evenly dispersed in the metal α-Fe matrix. Most of them take on nearly rhombus shape, and some of them are irregular in shape. The microhardness of laser cladding layer ranges from 770 HV0. 3 to 850 HV0. 3.展开更多
Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix m...Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.展开更多
In-situ SEM can intuitively observe the changes in microstructure and microcrack initiation during the deformation process of the specimen.In this paper,the microstructural evolution,mechanical properties,and damage n...In-situ SEM can intuitively observe the changes in microstructure and microcrack initiation during the deformation process of the specimen.In this paper,the microstructural evolution,mechanical properties,and damage nucleation modes of DP1180 laser welded joints were systematically discussed by the trans-mission electron microscope(TEM),focused ion beam(FIB),and in-situ tensile test.The precipitation of carbides and disappearance of dislocations tangles deteriorated the mechanical properties of tempered martensite in the sub-critical heat affected zone(SCHAZ),which caused its microhardness slightly de-creased(∼27 HV)and also called the softened zone.The joints fractured in the SCHAZ during the tensile and Erichsen cupping tests and microcracks initiated from the tempered martensite,while the microc-rack initiation of base material(BM)occurred at the ferrite/martensite interface.The dominant damage nucleation mode of the joint was tempered martensite cracking,and that of BM was ferrite/martensite interface decohesion during tests.展开更多
Laser powder bed fusion(LPBF)in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties.Functionally graded Fe-Cr-Co permanent magnetic alloys were fabrica...Laser powder bed fusion(LPBF)in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties.Functionally graded Fe-Cr-Co permanent magnetic alloys were fabricated by LPBF and in-situ alloying mixed powders of Fe,Cr,and Co elements.The effects of different Fe,Cr and Co contents on the microstructure,magnetic properties and hardness of Fe-Cr-Co alloys prepared by LPBF were studied.The as-built Fe-Cr-Co alloys present a single body-centered-cubic phase and have a homogeneous distribution of elements.The mechanical properties and magnetic properties of the compositionally graded sample show a gradient variation.With the increase in Cr content,the Vickers hardness of the sample increases,and the saturation magnetization of the sample decreases.The optimal magnetic properties in an isotropic state are given as coercivity HcB=21.65 kA/m,remanence Br=0.70 T and energy product(BH)_(max)=5.35 kJ/m^(3),which are comparable to or higher than the reported magnetic properties in an isotropic state prepared by traditional powder metallurgy.LPBF in-situ alloying technology has the potential to further explore Fe-Cr-Co magnetic materials,such as those consisting of multiple or more constituent elements,and to maximize the compositional flexibility of magnetic materials.展开更多
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020YQ39, ZR2020ZD05)Taishan Scholar Foundation of Shandong Province (tsqn202211002)the Young Scholars Program of Shandong University (Grant Number 2018WLJH24)
文摘Post-heat treatment is commonly employed to improve the microstructural homogeneity and enhance the mechanical performances of the additively manufactured metallic materials.In this work,a ternary(NiTi)91Nb9(at.%)shape memory alloy was produced by laser powder bed fusion(L-PBF)using pre-alloyed NiTi and elemental Nb powders.The effect of solution treatment on the microstructure,phase transformation behavior and mechanical/functional performances was investigated.The in-situ alloyed(NiTi)91Nb9 alloy exhibits a submicron cellular-dendritic structure surrounding the supersaturated B2-NiTi matrix.Upon high-temperature(1273 K)solution treatment,Nb-rich precipitates were precipitated from the supersaturated matrix.The fragmentation and spheroidization of the NiTi/Nb eutectics occurred during solution treatment,leading to a morphological transition from mesh-like into rod-like and sphere-like.Coarsening of theβ-Nb phases occurred with increasing holding time.The martensite transformation temperature increases after solution treatment,mainly attributed to:(i)reduced lattice distortion due to the Nb expulsion from the supersaturated B2-NiTi,and(ii)the Ti expulsion from theβ-Nb phases that lowers the ratio Ni/Ti in the B2-NiTi matrix,which resulted from the microstructure changes from non-equilibrium to equilibrium state.The thermal hysteresis of the solutionized alloys is around 145 K after 20%pre-deformation,which is comparable to the conventional NiTiNb alloys.A short-term solution treatment(i.e.at 1273 K for 30 min)enhances the ductility and strength of the as-printed specimen,with the increase of fracture stress from(613±19)MPa to(781±20)MPa and the increase of fracture strain from(7.6±0.1)%to(9.5±0.4)%.Both the as-printed and solutionized samples exhibit good tensile shape memory effects with recovery rates>90%.This work suggests that post-process heat treatment is essential to optimize the microstructure and improve the mechanical performances of the L-PBF in-situ alloyed parts.
基金National Natural Science Foundation of China (51935014,52165043, 82072084, 81871498)Jiang Xi Provincial Natural Science Foundation of China (20192ACB20005,2020ACB214004)+6 种基金The Provincial Key R&D Projects of Jiangxi (20201BBE51012)Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme (2018)Shenzhen Science and Technology Plan Project (JCYJ20170817112445033)Innovation Team Project on University of Guangdong Province(2018GKCXTD001)Technology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(PT2020E002)China Postdoctoral Science Foundation(2020M682114)Open Research Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology。
文摘Biodegradable magnesium(Mg) and its alloy show huge potential as temporary bone substitute due to the favorable biocompatibility and mechanical compatibility. However, one issue deserves attention is the too fast degradation. In this work, mesoporous bioglass(MBG)with high pore volume(0.59 cc/g) and huge specific surface area(110.78 m^(2)/g) was synthesized using improved sol-gel method, and introduced into Mg-based composite via laser additive manufacturing. Immersion tests showed that the incorporated MBG served as powerful adsorption sites, which promoted the in-situ deposition of apatite by successively adsorbing Ca2+and HPO42-. Such dense apatite film acted as an efficient protection layer and enhanced the corrosion resistance of Mg matrix, which was proved by the electrochemical impedance spectroscopy measurements. Thereby, Mg based composite showed a significantly decreased degradation rate of 0.31 mm/year. Furthermore,MBG also improved the mechanical properties as well as cell behavior. This work highlighted the advantages of MBG in the fabrication of Mg-based implant with enhanced overall performance for orthopedic application.
基金This work was supported by the foundation of Key Research and Development Program of Hubei Province(2020BAB137)Shen-zhen Fundamental Research Program(JCYJ20210324142007022).
文摘In-situ layerwise imaging measurement of laser powder bed fusion(LPBF)provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity.Using high-resolution camera layerwise imaging and image processing algorithms to monitor fusion area and powder bed geometric defects has been studied by many researchers,which successfully monitored the contours of components and evaluated their accuracy.However,research for the methods of in-situ 3D contour measurement or component edge warping identification is rare.In this study,a 3D contour mea-surement method combining gray intensity and phase difference is proposed,and its accuracy is verified by designed experiments.The results show that the high-precision of the 3D contours can be achieved by the constructed energy minimization function.This method can detect the deviations of common ge-ometric features as well as warpage at LPBF component edges,and provides fundamental data for in-situ quality monitoring tools.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (2020B1515120013,2022B1515120066)National Natural Science Foundation of China (Nos.U2001218, 51875215)+1 种基金Key-Area Research and Development Program of Guangdong Province (2020B090923001)Special Support Foundation of Guangdong Province (No.2019TQ05Z110)。
文摘It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites.
基金This research was supported by the Natural Science Foundation of Inner Mongolia (No. 200508010704)the Science Foundation of Inner Mongolia University of Technology (No. ZD200521) the Postdoctoral Science Foundation of China.
文摘A Ni-base alloy composite coating reinforced with TiC particles of various shapes and sizes on medium carbon steel substrate was produced by multilayer laser cladding. The chemical compositions, microstructures and surface morphology of the cladded layer were analyzed using energy dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), and X-ray diffractometry (XRD). The experimental results showed that an excellent metallurgical bonding between the coating and the substrate was obtained. The microstructure of the coating was mainly composed of γ-Ni dendrites, a small amount of CrB, Ni3B, M23C6 and dispersed TiC particles. Much more and larger TiC particles formed in the overlapping zone, which led to a slightly higher microhardness of this zone. The maximum microhardness of the coating was about HV0.21200. The effects of the laser processing parameters on the microstructures and properties of coating were also investigated.
基金supported by National High Technology Research and Development Program of China(863 Program)(2015AA034404)Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(2013RCJJ004)Distinguished Taishan Scholars in Climbing Plan(tspd20161006)
文摘Using Ni/Cr/graphite powder blends as raw powders,a Ni matrix composite coating reinforced by in-situ carbide,was fabricated on the surface of Q235 by means of laser cladding. These microstructure and properties were discussed. The result of phase analysis( XRD) and microstructure investigation( SEM) showed that the coatings consist mainly of Cr_3 C_2,Cr_7 C_3 and γ-( Ni,Cr),which are consistent with the thermodynamic calculations. The wear morphology of the coatings was also examined. The results of dry sliding wear tests of different Cr/C ratio show that the wear resistances of the Cr_3 C_2-reinforced coating,respectively,are 13. 4,9. 5,9. 1 and 6. 5 times higher than that of the substrate and the main wear mechanisms of the coatings are adhesion and abrasive wear with slight oxidation.
文摘In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.
基金National Natural Science Foundation ofChina (No.5 98710 3 8)
文摘The process of laser cladding procedure has a closely relation with properties of composite cladding layers. When the input power of laser is certain, the low scanning velocity makes substrate with ahead of laser beam heat for a long time, which worsens interface bonding from surface oxidized; much higher scanning velocity makes the powder’s synthesis near substrate uncompleted fully, the remained powder in interface worsens interface bonding as well. Otherwise, the input specific energy of laser influences on in-situ synthesis courses. If the input energy is lower, the synthesis is not completed fully. In addition, the low temperature effects not only restrict the dispersion of particle leading uneven distribution of TiC, but also form some regions consisting of Al and Al 3Ti.
基金Funded by National Natural Science Foundation of China(No.50572121) Key Pre-research Foundation of Weapon and Equipment(No. 9140A27010206JB35)
文摘In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology, China
文摘The solidification process of a conventional superalloy, IN718, was investigated by confocal scanning laser microscope (CSLM). The liquid fraction during solidification was obtained as a function of real time and temperature in reference with the in-situ observation. The characteristics of L→γ transformation were analyzed and the γ growing rate of each stage was also calculated. Scheil equation was employed to predict the segregation behavior, and the predict results are in consistence with the experimental results. As a result, the confocal scanning laser microscope shows a great potential for solidification process research.
基金support of the National Natural Science Foundation of China(Grant Nos.12372133 and 12027901)supported by the Natural Science Foun-dation of Hunan Province(Grant No.2021JJ30085)+2 种基金the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC30306)Open Research Fund of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University(Grant No.Kfkt2021-01)the Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant No.52175012).
文摘Laser powder bed fusion(LPBF)is a potential additive manufacturing process to manufacture Invar 36 alloy components with complicated geometry.Whereas it inevitably introduces specific microstructures and pore defects,which will further influence the mechanical properties.Hence,aiming at exploring the LPBF process-related microstructures and pore defects,and especially their influences on the damage mechanism and mechanical properties,Invar 36 alloy was manufactured by LPBF under designed different laser scanning speeds.The microstructure observations reveal that higher scanning speeds lead to equiaxed and short columnar grains with higher dislocation density,while lower scanning speeds result in elongated columnar grains with lower dislocation density.The pore defects analyzed by X-ray computed tomography(XCT)suggest that the high laser scanning speed gives rise to numerous lamellar and large lack-of-fusion(LOF)pores,and the excessively low laser scanning speed produces relatively small keyhole pores with high sphericity.Moreover,the insitu XCT tensile tests were originally performed to evaluate the damage evolution and failure mechanism.Specifically,high laser scanning speed causes brittle fracture due to the rapid growth and coalescence of initial lamellar LOF pores along the scan-ning direction.Low laser scanning speed induces ductile fracture originating from unstable depressions in the surfaces,while metallurgical and keyhole pores have little impact on damage evolution.Eventually,the process-structure-property correlation is established.The presence of high volume fraction of lamel-lar LOF pores,resulting from high scanning speed,leads to inferior yield strength and ductility.Besides,specimens without LOF pores exhibit larger grain sizes and lower dislocation density at decreased scanning speeds,slightly reducing yield strength while slightly enhancing ductility.This understanding lays the foundation for widespread applications of LPBF-processed Invar 36 alloy.
基金Defense Industrial Technology Development Program(No.JCKY2019205A002)National Science and Technology Major Project(Nos.J2019-IV-0012-0080,J2019-VII-0004-0144,and Y2022-VII-0007).
文摘Laser powder bed fusion(LPBF)is a highly dynamic and complex physical process,and single-track de-fects tend to accumulate into non-negligible internal defects of parts.The nickel-based superalloy single track was fabricated by LPBF,and its plume and spattering behavior were monitored in situ and recorded in real time based on image recognition and tracking in this study.The relationship among laser energy density,melt flow,plume and spattering behavior during LPBF was discussed.Volumetric energy density had limitations as a design parameter for LPBF.However,we found that plume and spattering behavior can be used as real-time design parameters for the processing of LPBF parts and implemented the initial velocity statistics for LPBF single-track spattering based on the centroid extraction algorithm.The influ-ence of melt flow evolution paths on the spattering and plume behavior in three different melting modes was revealed,and a shift in plume behavior was found in the overlap region of the additive substrate.This study provides a new method for obtaining statistics of spattering-related physical quantities in the melting mode,which is beneficial for the development of processing methods to mitigate the instability of the LPBF process.
基金supported by the Shanghai Science and Technology Development Foundation(No.08QA14035)the Special Foundation of Shanghai Education Commission for Nano-Materials Research(No.0852nm01400)the Crucial Project of Shanghai Science and Technology Commission(No.08520513400)
文摘Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles were successfully fabricated on Ti6Al4V by laser cladding using Ti-B_4C-Al or Ti-B_4C-C-Al powders as the precursor materials.The microstructural and metallographic analyses were made by X-ray diffraction(XRD),optical microscope(OM),scanning electron microscopy(SEM),and electron probe microanalysis (EPMA).The results show that the coatings are mainly composed ofα-Ti cellular dendrites and a eutectic transformation product in which a large number of coarse and fine needle-shaped TiB and a few equiaxial TiC particles are homogeneously embedded.A thin dilution zone with a thickness of about 100μm is present at the interface,and it consists of a few TiB and TiC reinforcements and a large number of lamella grains growing parallel to the heat flux direction in which a thin needle-shaped microstructure exists due to the martensitic transformation. The microstructural evolution can be divided into four stages:precipitation and growth of primaryβ-Ti phase,formation of the binary eutecticumβ-Ti+TiB,formation of the ternary eutecticumβ-Ti+TiB+TiC,and solid transformation fromβ-Ti toα-Ti.
基金Suppored by the China National Science and Technology Major Project(2016ZX05004-002).
文摘Through the development and calibration of a reference material which is 209.8 Ma old using a newly-developed Laser Ablation(LA)Multi-Collector Inductively Coupled Plasma Mass Spectrometry(MC-ICP-MS)technique,we successfully overcome the difficulty in sampling and dating ultra-low U-Pb ancient marine carbonates,which was previously untenable by isotope dilution(ID)methods.We developed the LA-MC-ICP-MS in situ U-Pb dating technique for ancient marine carbonates for the study of diagenesis-porosity evolution history in Sinian Dengying Formation,Sichuan Basin.By systematically dating of dolomitic cements from vugs,matrix pores and fractures,we found that the burial and diagenetic process of dolomite reservoirs in Sinian Dengying Formation was characterized by progressive filling-up of primary pores and epigenic dissolution vugs.The filling of vugs happened in three stages,early Caledonian,late Hercynian-Indosinian and Yanshanian-Himalayan,while the filling of matrix pores mainly took place in early Caledonian.The unfilled residual vugs,pores and fractures constitute the main reservoir sapce.Based on the above knowledge,we established the diagenesis-porosity evolution history of the dolomite reservoir in Sinian Dengying Formation,Sichuan Basin.These findings are highly consistent with the tectonic-burial and basin thermal histories of the study area.Our study confirmed the reliability of this in situ U-Pb dating technique,which provides an effective way for the investigation of diagenesis-porosity evolution history and evaluation of porosity in ancient marine carbonate reservoirs before hydrocarbon migration.
文摘Fe-based alloy coatings reinforced by Ti( C, N) particles was produced through CO2 laser cladding technology. The microstructure of laser cladding coating was analyzed by means of X-ray diffraction ( XRD ), transmission electron microscopy (TEM) , selected area electron diffraction ( SAED ) , scanning electron microscopy (SEM) and electron probe microscopic analyzer ( EPMA ). The mechanical property of the layer was measured by using microhardness meter. The results show that Ti ( C0. 3 N0. 7 ) panicles are introduced by an in-situ metallurgical reaction between TiN particle and graphite powder during laser cladding process. Titanium carbonitrides particles existed in the layer are fairly fine, ranging from 0. 1 μm to 5.0 μm, and evenly dispersed in the metal α-Fe matrix. Most of them take on nearly rhombus shape, and some of them are irregular in shape. The microhardness of laser cladding layer ranges from 770 HV0. 3 to 850 HV0. 3.
文摘Direct analysis of copper-base alloys using laser ablation techniques is an increasingly common procedure in cultural heritage studies. However, main discussions remain focused on the possibility of using non-matrix matched external reference materials. To evaluate the occurrence of matrix effects during in situ microanalysis of copper-base materials, using near infrared femtosecond laser ablation techniques (NIR fs-LA-ICP-MS), two bronzes, i.e., (Sn-Zn)-ternary and (Sn)-binary copper-matrix reference materials, as well as a reference synthetic glass (NIST-SRM-610) have been analyzed. The results have been compared to data obtained on a sulfide-matrix reference material. Similar values in relative sensitivity averages of 63Cu, 118Sn and 66Zn, as well as in 118Sn/63Cu and 66Zn/63Cu ratios were obtained, for all analyzed matrix types, i.e., copper-base-, silicate-, and sulfide-reference materials. Consequently, it is possible to determinate major and minor element concentrations in copper alloys, i.e., Cu, Sn and Zn, using silicate and sulfide reference materials as external calibrators, without any matrix effect and over a wide range of concentrations (from wt.% to ppm). Equally, Cu, Sn and Zn concentrations can be precisely determined in sulfides using homogeneous alloys (reference) materials as an external calibrator. Thus, it is possible to determine Cu, Sn and Zn in copper-base materials and their ore minerals, mostly sulfides, in a single analytical session, without requiring specific external calibrators for each matrix type. In contrast, immiscible elements in copper matrix, such as Pb and Fe show notable differences in their relative sensitivity values and ratios for different matrix-materials analyzed, implying that matrix-matched external calibrations remain to be applied for their trace quantification.
基金financially supported by the National Natural Science Foundation of China(Nos.51871010 and52005022).
文摘In-situ SEM can intuitively observe the changes in microstructure and microcrack initiation during the deformation process of the specimen.In this paper,the microstructural evolution,mechanical properties,and damage nucleation modes of DP1180 laser welded joints were systematically discussed by the trans-mission electron microscope(TEM),focused ion beam(FIB),and in-situ tensile test.The precipitation of carbides and disappearance of dislocations tangles deteriorated the mechanical properties of tempered martensite in the sub-critical heat affected zone(SCHAZ),which caused its microhardness slightly de-creased(∼27 HV)and also called the softened zone.The joints fractured in the SCHAZ during the tensile and Erichsen cupping tests and microcracks initiated from the tempered martensite,while the microc-rack initiation of base material(BM)occurred at the ferrite/martensite interface.The dominant damage nucleation mode of the joint was tempered martensite cracking,and that of BM was ferrite/martensite interface decohesion during tests.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2021YFB3702500).
文摘Laser powder bed fusion(LPBF)in-situ alloying technology offers the possibility to construct gradient materials with varied structures and properties.Functionally graded Fe-Cr-Co permanent magnetic alloys were fabricated by LPBF and in-situ alloying mixed powders of Fe,Cr,and Co elements.The effects of different Fe,Cr and Co contents on the microstructure,magnetic properties and hardness of Fe-Cr-Co alloys prepared by LPBF were studied.The as-built Fe-Cr-Co alloys present a single body-centered-cubic phase and have a homogeneous distribution of elements.The mechanical properties and magnetic properties of the compositionally graded sample show a gradient variation.With the increase in Cr content,the Vickers hardness of the sample increases,and the saturation magnetization of the sample decreases.The optimal magnetic properties in an isotropic state are given as coercivity HcB=21.65 kA/m,remanence Br=0.70 T and energy product(BH)_(max)=5.35 kJ/m^(3),which are comparable to or higher than the reported magnetic properties in an isotropic state prepared by traditional powder metallurgy.LPBF in-situ alloying technology has the potential to further explore Fe-Cr-Co magnetic materials,such as those consisting of multiple or more constituent elements,and to maximize the compositional flexibility of magnetic materials.