期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by Laser Interference Lithography 被引量:2
1
作者 乐艮 雷宇 +2 位作者 迭俊珲 贾海强 陈弘 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期56-59,共4页
We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions... We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm,and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications. 展开更多
关键词 exp Fabrication of 4-Inch Nano Patterned Wafer with High Uniformity by laser interference lithography
下载PDF
Response of MG63 Osteoblast Cells to Surface Modification of Ti-6Al-4V Implant Alloy by Laser Interference Lithography 被引量:4
2
作者 Qi Liu Wenjun Li +7 位作者 Liang Cao Jiajia Wang Yingmin Qu Xinyue Wang Rongxian Qiu Xu Di Zuobin Wang Bojian Liang 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第3期448-458,共11页
The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL). In this work, laser interference lithogr... The response of human osteoblast-like osteosarcoma cells (MG63) to surface modification of Ti-6Al-4V implant alloy was investigated by Laser Interference Lithography (LIL). In this work, laser interference lithography was employed to fabricate the microstructures of grooves, dots and dimples onto the surfaces of Ti-6Al-4V samples. Two and three beam LIL systems were developed to carry out the experiments. The laser treatment resulted in the increases of the roughness and the contact angle of water on the implant alloy surfaces. The proliferation of osteoblasts was analyzed by MTT (3-(4,5-dirnethyl- 2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay for the time periods of 4 hours, 2 days, 3 days, and 6 days. The MTT test results demonstrated that the laser treatment surfaces had a positive impact on the proliferation of os- teoblast cells after 24 hours. The alloy surface morphology and the morphological changes of MG63 cells cultured on the laser textured Ti-6Al-4V surface were observed by Scanning Electron Microscope (SEM). The SEM results indicated that the os- teoblast cells were aligned on grooved surfaces and they were prolonged with the structures. Enzymatic detachment results showed that the 20 μm grooved structures provided the better cell adhesion to the textured Ti-6Al-4V surfaces. 展开更多
关键词 Ti-6Al-4V implant alloy laser interference lithography surface modification surface properties cell-substrate interaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部