Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward tra...Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.展开更多
In this paper,we demonstrate an all-fiber linearly polarized fiber laser oscillator.The single polarization of the oscillator is achieved through the careful designing of the active fiber coiling.The relationship betw...In this paper,we demonstrate an all-fiber linearly polarized fiber laser oscillator.The single polarization of the oscillator is achieved through the careful designing of the active fiber coiling.The relationship between fiber coiling diameter and polarization extinction ratio and optical efficiency is studied,whose results lead to an optimized system.The thermal management of the oscillator is also refined,which allows the oscillator to reach a maximum output power of44.1 W with an optical-to-optical efficiency of 57.9%.A high average polarization extinction ratio of 21.6 d B is achieved during a 2-hour stability test.The oscillator also owns a narrow 3-d B bandwidth of 0.1 nm,as well as near-diffraction-limit beam quality of M^2~ 1.14.展开更多
We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The osc...We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48nrn with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environ- ment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.展开更多
A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standar...A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.展开更多
Laser oscillating welding was employed to fabricate Al-Si coated press-hardened steel(PHS)to improve the element homogeneity in the fusion zone.Laser oscillating welding was employed with various oscillation amplitude...Laser oscillating welding was employed to fabricate Al-Si coated press-hardened steel(PHS)to improve the element homogeneity in the fusion zone.Laser oscillating welding was employed with various oscillation amplitudes(0 mm,0.5 mm and 1.3 mm)in this present.Ni foil of 0.06 mm thickness was used as an interlayer between two tailored PHS welded.The weld morphology,elemental profile,microstructure and tensile strength of welded joints were studied.The results showed that full penetration weld without any weld defects were achieved for any oscillation amplitudes,and weld width increased with increasing oscillation amplitudes.With the oscillation amplitudes increased,Ni and Al had an uneven elemental profile due to strong stirring force,but the Ni and Al content in the weld was decreased and Ni had a sharp descent compared to Al element.Only fewδ-ferrite was presented in fusion line with the oscillation amplitudes increased to 1.3 mm.The oscillation amplitudes did not have an effect on the tensile properties,which was similar to that of base metal.But if keeping increasing the oscillation amplitudes or reducing the thickness of Ni interlayer,it has a potential risk to form more and moreδferrite such that deteriorate the mechnical properties of welded joints.展开更多
We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.0...We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.展开更多
We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of...We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M^(2)<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.展开更多
The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission...The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.展开更多
The poor wear and corrosion resistance of aluminum alloys has led to the easy failure of surface perfor-mance.In this work,composite coatings of TiC/martensitic stainless steel(TiC/MSS)on aluminum alloy are fabricated...The poor wear and corrosion resistance of aluminum alloys has led to the easy failure of surface perfor-mance.In this work,composite coatings of TiC/martensitic stainless steel(TiC/MSS)on aluminum alloy are fabricated by a novel approach of circular oscillating laser for enhanced surface performance of alu-minum alloys.The oscillation of laser leads to dense microstructure,and nano/micro scale TiC particles are formed simultaneously.The structure of coatings transforms from dendritic to ring-like with the ad-dition of TiC,and the hardness of the substrate is increased by 4.5-7.8 times.The main wear form of coatings is adhesive wear.The refinement of microstructure and formation of multi-scale TiC have given rise to an increase in the resistance of the coating to plastic deformation,which reduces the degree of adhesion and improves wear resistance.Besides,the barrier effect of TiC particles to the electrolyte solu-tion in the passive film gives rise to the drop in corrosion current density.The Cr-rich stacking faults can provide nucleation sites for the formation and growth of passive films with high continuity and stability,thereby improving the corrosion resistance of the coatings.The superior anticorrosion and wear resis-tance properties of the composite coatings in this work have emphasized the merits of oscillating laser in fabricating high-performance coatings and would enlighten the design of more advanced composite coatings.展开更多
By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quant...By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quantum statistics as state-vector evolution equations due to the elegant properties of (η|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant k we find that the matrix element of p(t) at time t in 〈η| representation is proportional to that of the initial po in the decayed entangled state (ηe^-kt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = f(d^2η/π)(η|ρ〉D(η), which is different from all the previous known representations.展开更多
We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 1...We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 10-kHz repetition rate when pumped with a 10-W diode laser at 808 rim. The output wavelength is centered at 1554.3 nm with a 0.03-nm spectral width. Wavelength tuning is achieved by rotating a mirror and changing the crystal temperature.展开更多
An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium.Using waveguides,a highly uniform pump beam distribution is achieved,and the flow velocity...An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium.Using waveguides,a highly uniform pump beam distribution is achieved,and the flow velocity distribution is also optimized in the channels of the gain module(GM).At various flow velocities,the convective heat transfer coefficient(CHTC)is obtained.Experimentally,a maximum output power of 434 W is obtained with an optical–optical efficiency of 27.1%and a slope efficiency of 36.6%.To the best of our knowledge,it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab.展开更多
In this study,a wire oscillating laser additive manufacturing(O-WLAM)process was used to deposit 2319 aluminum alloy samples.The optimization of the deposition process parameters made it possible to obtain samples wit...In this study,a wire oscillating laser additive manufacturing(O-WLAM)process was used to deposit 2319 aluminum alloy samples.The optimization of the deposition process parameters made it possible to obtain samples with smooth surfaces and extremely low porosities.The effects of the deposition parameters on the formability and evolution of the microstructure and mechanical properties before and after heat treatment were studied.The oscillating laser deposition of 2319 aluminum alloy,especially the circular oscillation mode,significantly reduced the porosity and improved the process stability and formability compared with non-oscillating laser deposition.There were clear boundaries between the deposition units in the deposition state,the interior of which was dominated by columnar crystals with many rod-and point-shaped precipitates.After the heat treatment,theθphase was significantly dissolved.The residual dot-and rod-shapedθ'phases were dispersedly distributed,exhibiting an obvious precipitation-hardening effect.The samples in the as-deposited state had a tensile strength of 245–265 MPa,an elongation of approximately 12.6%,and an 87 HV microhardness.After heat treatment at 530°C for 20 h and aging at 175°C for 18 h,the tensile strength,elongation,and microhardness reached 425–440 MPa,approximately 10%,and 153 HV,respectively.The performance improved significantly without significant anisotropy.Compared with the samples produced by wire arc additive manufacturing(WAAM),the tensile strength increased by approximately 10%,and the strength and microhardness were significantly improved.展开更多
A highly efficient laser system output at the H-13 Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achi...A highly efficient laser system output at the H-13 Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achieve 355 nm laser pulses, which acted as the pmnp source of the beta barium borate nanosecond pulse optical para- metric oscillator. With pump energy of 190 mJ, the laser system generated a maximum output of 62 mJ blue laser pulses at 486.1 nm, corresponding to conversion efficiency of 32.6%. The laser spectrum width was measured to be around 0.1 ran, being in conformity with the spectrum width of the solar Fraunhofer line.展开更多
A high pulse repetition frequency(PRF), high energy Ho:YAG laser directly pumped by a Tm-doped fiber laser and its application to a mid-infrared ZnGeP_2(ZGP) optical parametric oscillator(OPO) is demonstrated.T...A high pulse repetition frequency(PRF), high energy Ho:YAG laser directly pumped by a Tm-doped fiber laser and its application to a mid-infrared ZnGeP_2(ZGP) optical parametric oscillator(OPO) is demonstrated.The maximum polarized 2.09 μm laser pulse energy is 13.46 mJ at a PRF of 1 k Hz. The corresponding peak power reaches 504 kW. In a double-resonant ZGP-OPO, a maximum mid-infrared laser pulse energy of 1.25 m J,corresponding to a peak power of 79 kW, is accomplished at a PRF of 3 kHz. The nonlinear conversion efficiency reaches 41.7%. The nonlinear slope efficiency reaches 53.3%.展开更多
FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm...FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm. In this paper, we numerically study the output characteristics of the middle-infrared oscillator with accurate cavity length detuning. Emphasis is put on the temporal structure of the micropulse and the corresponding spectral bandwidth.Taking the radiation wavelengths of 50 μm and 5 μm as examples, we show that the output pulse duration can be tuned in the range of 1–6 ps with corresponding bandwidth of 13%–0.2% by adjusting the cavity length detuning.In addition, a special discussion on the comb structure is presented, and it is indicated that the comb structure may arise in the output optical pulse when the normalized slippage length is much smaller than unity. This work has reference value for the operation of FELiChEM and other FEL oscillators.展开更多
In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional p...In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional point(EP)and the coherent perfect absorber-laser(CPAL)point,to significantly enhance the sensitivity and detectability of photonic sensors.We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric,unbalanced gain-loss profile.The PTLY-symmetric metasurfaces can exhibit similar scattering properties as their Pr-symmetric counterparts at singular points,while achieving a higher sensitivity and a larger modulation depth,possible with the reciprocal-scaling factor(i.e.,X transformation).Specifically,with the optimal reciprocalscaling factor or near-zero phase offset,the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth,thus paving a promising route toward the detection of small-scale perturbations caused by,for example,molecular,gaseous,and biochemical surface adsorbates.展开更多
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Guangdong Natural Science Foundation under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the’Cross and Cooperative’Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB1104500)the National Natural Science Foundation of China(Grant No.61675114)the Tsinghua University(THU)Initiative Scientific Research Program,China(Grant No.20151080709)
文摘In this paper,we demonstrate an all-fiber linearly polarized fiber laser oscillator.The single polarization of the oscillator is achieved through the careful designing of the active fiber coiling.The relationship between fiber coiling diameter and polarization extinction ratio and optical efficiency is studied,whose results lead to an optimized system.The thermal management of the oscillator is also refined,which allows the oscillator to reach a maximum output power of44.1 W with an optical-to-optical efficiency of 57.9%.A high average polarization extinction ratio of 21.6 d B is achieved during a 2-hour stability test.The oscillator also owns a narrow 3-d B bandwidth of 0.1 nm,as well as near-diffraction-limit beam quality of M^2~ 1.14.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the Fundamental Research Funds for the Central Universities under Grant No 2014TS017
文摘We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48nrn with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environ- ment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.
基金Project supported by the Initiative Research Program of State Key Laboratory of Precision Measurement Technology and Instruments,Chinathe National Natural Science Foundation of China(Grant No.51527901)
文摘A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained.
基金National Natural Science Foundation of China(Grant No.52005357)“Qinglan”Project of Jiangsu Province of China,and Jiangsu Provincial Natural Science Foundation of China(Grant No.BK 20180984).
文摘Laser oscillating welding was employed to fabricate Al-Si coated press-hardened steel(PHS)to improve the element homogeneity in the fusion zone.Laser oscillating welding was employed with various oscillation amplitudes(0 mm,0.5 mm and 1.3 mm)in this present.Ni foil of 0.06 mm thickness was used as an interlayer between two tailored PHS welded.The weld morphology,elemental profile,microstructure and tensile strength of welded joints were studied.The results showed that full penetration weld without any weld defects were achieved for any oscillation amplitudes,and weld width increased with increasing oscillation amplitudes.With the oscillation amplitudes increased,Ni and Al had an uneven elemental profile due to strong stirring force,but the Ni and Al content in the weld was decreased and Ni had a sharp descent compared to Al element.Only fewδ-ferrite was presented in fusion line with the oscillation amplitudes increased to 1.3 mm.The oscillation amplitudes did not have an effect on the tensile properties,which was similar to that of base metal.But if keeping increasing the oscillation amplitudes or reducing the thickness of Ni interlayer,it has a potential risk to form more and moreδferrite such that deteriorate the mechnical properties of welded joints.
基金Supported by the National Natural Science Foundation of China under Grant No 51572053
文摘We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.
基金Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B090904003)the National Natural Science Foundation of China(Grant Nos.11774410 and 91850209)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB16030200).
文摘We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB_(3)O_(6)(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M^(2)<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.
基金supported by the CAS Project for Young Scientists in Basic Research(No.YSBR-042)the National Natural Science Foundation of China(Nos.12125508,11935020)+1 种基金Program of Shanghai Academic/Technology Research Leader(No.21XD1404100)Shanghai Pilot Program for Basic Research–Chinese Academy of Science,Shanghai Branch(No.JCYJSHFY-2021-010).
文摘The cavity-based X-ray free-electron laser(XFEL)has promise in producing fully coherent pulses with a bandwidth of a few meV and very stable intensity,whereas the currently existing self-amplified spontaneous emission(SASE)XFEL is capable of generating ultra-short pulses with chaotic spectra.In general,a cavity-based XFEL can provide a spectral brightness three orders of magnitude higher than that of the SASE mode,thereby opening a new door for cutting-edge scientific research.With the development of superconducting MHz repetition-rate XFEL facilities such as FLASH,European-XFEL,LCLS-II,and SHINE,practical cavity-based XFEL operations are becoming increasingly achievable.In this study,megahertz cavity enhanced X-ray generation(MING)is proposed based on China’s first hard XFEL facility-SHINE,which we refer to as MING@SHINE.
基金National Natural Science Foundation of China(Nos.51971121 and 52002228)National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers(CN)(No.U2106216)Qingdao Marine Science and Technology Innovation Project(No.22-3-3-hygg-27-hy).
文摘The poor wear and corrosion resistance of aluminum alloys has led to the easy failure of surface perfor-mance.In this work,composite coatings of TiC/martensitic stainless steel(TiC/MSS)on aluminum alloy are fabricated by a novel approach of circular oscillating laser for enhanced surface performance of alu-minum alloys.The oscillation of laser leads to dense microstructure,and nano/micro scale TiC particles are formed simultaneously.The structure of coatings transforms from dendritic to ring-like with the ad-dition of TiC,and the hardness of the substrate is increased by 4.5-7.8 times.The main wear form of coatings is adhesive wear.The refinement of microstructure and formation of multi-scale TiC have given rise to an increase in the resistance of the coating to plastic deformation,which reduces the degree of adhesion and improves wear resistance.Besides,the barrier effect of TiC particles to the electrolyte solu-tion in the passive film gives rise to the drop in corrosion current density.The Cr-rich stacking faults can provide nucleation sites for the formation and growth of passive films with high continuity and stability,thereby improving the corrosion resistance of the coatings.The superior anticorrosion and wear resis-tance properties of the composite coatings in this work have emphasized the merits of oscillating laser in fabricating high-performance coatings and would enlighten the design of more advanced composite coatings.
基金supported by President Foundation of Chinese Academy of Sciences and National Natural Science Foundation of China under Grant Nos. 10775097 and 10874174
文摘By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quantum statistics as state-vector evolution equations due to the elegant properties of (η|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant k we find that the matrix element of p(t) at time t in 〈η| representation is proportional to that of the initial po in the decayed entangled state (ηe^-kt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = f(d^2η/π)(η|ρ〉D(η), which is different from all the previous known representations.
基金supported by National Science Council, Taiwan under contract NSC102-2221-E-007-100-MY2
文摘We report a line-narrowed electro-optic periodically-poled-lithium-niobate (PPLN) Q-switched laser with intra-cavity optical parametric oscillation using a grazing-incidence grating, producing 8-ns, 5-#J pulses at 10-kHz repetition rate when pumped with a 10-W diode laser at 808 rim. The output wavelength is centered at 1554.3 nm with a 0.03-nm spectral width. Wavelength tuning is achieved by rotating a mirror and changing the crystal temperature.
基金supported by the National Natural Science Foundation of China(No.62105179)the Joint Funds of the Zhejiang Provincial Natural Science Foundation(No.LZY21F050001)the Quzhou Science and Technology Plan Project(Nos.2022K87 and 2021K40).
文摘An immersed liquid cooling slab laser is demonstrated with deionized water as the coolant and a Nd:YAG slab as the gain medium.Using waveguides,a highly uniform pump beam distribution is achieved,and the flow velocity distribution is also optimized in the channels of the gain module(GM).At various flow velocities,the convective heat transfer coefficient(CHTC)is obtained.Experimentally,a maximum output power of 434 W is obtained with an optical–optical efficiency of 27.1%and a slope efficiency of 36.6%.To the best of our knowledge,it is the highest output power of an immersed liquid cooling laser oscillator with a single Nd:YAG slab.
基金National Natural Science Foundation of China(Grant No.52175370).
文摘In this study,a wire oscillating laser additive manufacturing(O-WLAM)process was used to deposit 2319 aluminum alloy samples.The optimization of the deposition process parameters made it possible to obtain samples with smooth surfaces and extremely low porosities.The effects of the deposition parameters on the formability and evolution of the microstructure and mechanical properties before and after heat treatment were studied.The oscillating laser deposition of 2319 aluminum alloy,especially the circular oscillation mode,significantly reduced the porosity and improved the process stability and formability compared with non-oscillating laser deposition.There were clear boundaries between the deposition units in the deposition state,the interior of which was dominated by columnar crystals with many rod-and point-shaped precipitates.After the heat treatment,theθphase was significantly dissolved.The residual dot-and rod-shapedθ'phases were dispersedly distributed,exhibiting an obvious precipitation-hardening effect.The samples in the as-deposited state had a tensile strength of 245–265 MPa,an elongation of approximately 12.6%,and an 87 HV microhardness.After heat treatment at 530°C for 20 h and aging at 175°C for 18 h,the tensile strength,elongation,and microhardness reached 425–440 MPa,approximately 10%,and 153 HV,respectively.The performance improved significantly without significant anisotropy.Compared with the samples produced by wire arc additive manufacturing(WAAM),the tensile strength increased by approximately 10%,and the strength and microhardness were significantly improved.
基金supported by the National Key Research and Development Program of China(No.2016YFC1400902)the National Key Scientific Instrument and Equipment Development Project(No.2013YQ120343)+1 种基金the Scientific Innovation Fund of Chinese Academy of Sciences(No.CXJJ-16S014)the Development Program of China(No.2014AA093301)
文摘A highly efficient laser system output at the H-13 Fraunhofer line of 486.1 nm has been demonstrated. A high pulse energy single-frequency hybrid 1064 nm master oscillator power amplifier was frequency-tripled to achieve 355 nm laser pulses, which acted as the pmnp source of the beta barium borate nanosecond pulse optical para- metric oscillator. With pump energy of 190 mJ, the laser system generated a maximum output of 62 mJ blue laser pulses at 486.1 nm, corresponding to conversion efficiency of 32.6%. The laser spectrum width was measured to be around 0.1 ran, being in conformity with the spectrum width of the solar Fraunhofer line.
基金supported by the National Natural Science Foundation of China(No.61275146)the National Key Research and Development Program of China(No.2016YFB0402104)
文摘A high pulse repetition frequency(PRF), high energy Ho:YAG laser directly pumped by a Tm-doped fiber laser and its application to a mid-infrared ZnGeP_2(ZGP) optical parametric oscillator(OPO) is demonstrated.The maximum polarized 2.09 μm laser pulse energy is 13.46 mJ at a PRF of 1 k Hz. The corresponding peak power reaches 504 kW. In a double-resonant ZGP-OPO, a maximum mid-infrared laser pulse energy of 1.25 m J,corresponding to a peak power of 79 kW, is accomplished at a PRF of 3 kHz. The nonlinear conversion efficiency reaches 41.7%. The nonlinear slope efficiency reaches 53.3%.
基金Supported by National Natural Science Foundation of China(21327901,11205156)
文摘FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm. In this paper, we numerically study the output characteristics of the middle-infrared oscillator with accurate cavity length detuning. Emphasis is put on the temporal structure of the micropulse and the corresponding spectral bandwidth.Taking the radiation wavelengths of 50 μm and 5 μm as examples, we show that the output pulse duration can be tuned in the range of 1–6 ps with corresponding bandwidth of 13%–0.2% by adjusting the cavity length detuning.In addition, a special discussion on the comb structure is presented, and it is indicated that the comb structure may arise in the output optical pulse when the normalized slippage length is much smaller than unity. This work has reference value for the operation of FELiChEM and other FEL oscillators.
文摘In this paper,we introduce an ultra-sensitive optical sensing platform based on the parity-time-reciprocal scaling(PT^-symmetric non-Hermitian metasurfaces,which leverage exotic singularities,such as the exceptional point(EP)and the coherent perfect absorber-laser(CPAL)point,to significantly enhance the sensitivity and detectability of photonic sensors.We theoretically studied scattering properties and physical limitations of the PTX-symmetric metasurface sensing systems with an asymmetric,unbalanced gain-loss profile.The PTLY-symmetric metasurfaces can exhibit similar scattering properties as their Pr-symmetric counterparts at singular points,while achieving a higher sensitivity and a larger modulation depth,possible with the reciprocal-scaling factor(i.e.,X transformation).Specifically,with the optimal reciprocalscaling factor or near-zero phase offset,the proposed PTX-symmetric metasurface sensors operating around the EP or CPAL point may achieve an over 100 dB modulation depth,thus paving a promising route toward the detection of small-scale perturbations caused by,for example,molecular,gaseous,and biochemical surface adsorbates.