This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ...This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.展开更多
To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the...To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.展开更多
The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can man...The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.展开更多
In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the sol...In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.展开更多
We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compa...We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.展开更多
This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures...This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures are periodic ripples, aperiodic ripples, and ‘coral-like' structures. Optimal conditions for forming these surface structures are determined in terms of pulses number at a given pulse energy. The applicable mechanism is suggested to interpret the formation and evolution of the 'coral-like' structures.展开更多
Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of t...Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.展开更多
Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher princi...Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.展开更多
This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving n...This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.展开更多
We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations...We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase(CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.展开更多
An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propag...An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propagates in the cylinder, electrons are extracted out of the cylinder inner wall and accelerated to high energies. These energetic electrons later run into the second counter-propagating laser pulse, radiating a large amount of high-energy gamma photons via the Compton back-scattering process. The emitted gamma photons then collide with the second laser pulse to initiate the Breit-Wheeler process for pairs production. Due to the strong self-generated fields in the cylinder, positrons are confined in the channel to form dense pair plasmas. Totally, the maximum density of pair plasmas can be 4.60 × 10^27 m%-3, for lasers with an intensity of 4 × 10^22 W.cm^-2. Both the positron yield and density are tunable by changing the cylinder radius and the laser parameters. The generated dense pair plasmas can further facilitate investigations related to astrophysics and particle physics.展开更多
The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr6dinger equation using the mapped Fourier grid m...The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr6dinger equation using the mapped Fourier grid method. The frequency components of the laser pulse close to the atomic resonance are partly cut off. Compared with the typical Gauss-type pulses, the cut-off pulse is helpful to suppress efficiently the weakly bound states and prepare the associated molecules in the lower vibrational states. Especially, the dependence of photoassociation probability on the cut-off position of the laser pulse is explored.展开更多
Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an open...Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an opening of 5 μm, are fabricated using standard semiconductor technology. When the incident laser energy is low and no pre-plasma is generated on the side walls of the cones, the cone target acts like an optical device to reflect the laser pulse, and 15% of the laser energy can be transmitted through the cones. In contrast, when the incident laser energy is high enough to generate pre-plasmas by the pre-pulse of the main pulse that fills the inner cone, the cone with the plasmas will block the transmission of the laser, which leads to a decrease in laser transmission compared with the low-energy case with no plasma. Simulation results using optical software in the low-energy case, and using the particle-in-cell code in the high-energy case, are primarily in agreement with the experimental results.展开更多
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the imp...The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.展开更多
A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the re...A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.展开更多
Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. T...Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters. We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.展开更多
We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum...We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum is obviously extended and the short quantum path is selected to contribute to the spectrum, because the corresponding long path is seriously suppressed. Then the combined Coulomb and laser field potentials and the time-dependent electron wave packet distributions are applied to illustrate the physical mechanism of high-order harmonic gen- eration. Finally, by adjusting the intensity of the static field and superposing a properly selected range of the HHG spectrum, a 90-as isolated attosecond pulse is straightforwardly obtained.展开更多
We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that ...We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that the spectral redshift of highorder harmonics can be observed by adding a weak pulse in the falling part of the trapezoidal laser pulses. Comparing with the H_2~+ molecule, the shift of high-order harmonic generation(HHG) spectrum for the D_2~+ molecule is more obvious.We employ the spatial distribution in HHG and time-frequency analysis to illustrate the physical mechanism of the spectral redshift of high-order harmonics.展开更多
A Fourier analysis method is used to accurately determine not only the absolute phase but also the tempuralpulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape an...A Fourier analysis method is used to accurately determine not only the absolute phase but also the tempuralpulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It pavas the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.展开更多
Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly th...Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly through tunnel ionization in the combined field from ions, electrons and laser, rather than the electron-impact ionization. With increasing cluster size, the average and maximum kinetic energy of the product ion increases. According to our calculation, the expansion process of the clusters after laser irradiation is dominated by Coulomb explosion and the expansion scale increases with increasing cluster size. The dependence of average kinetic energy and average charge state of the product ions on laser wavelength is also presented and discussed. The dependence of average kinetic energy on the number of atoms inside the cluster was studied and compared with the experimental data. Our results agree with the experimental results reasonably well.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10947170/A05 and 11104291)the Natural Science Fund for Colleges and Universities in Jiangsu Province (Grant No.10KJB140006)+2 种基金the Natural Sciences Foundation of Shanghai (Grant No.11ZR1441300)the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No.NY221098)the Jiangsu Qing Lan Project for their sponsorship。
文摘This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought.
基金The National Natural Science Foundation of China(No.61171081,No.61471164)the Natural Science Foundation of Hunan Province(No.14JJ6043)
文摘To overcome the shortcomings of the single-shot autocorrelation SSA where only one pulse width is obtained when the SSA is applied to measure the pulse width of ultrashort laser pulses a modified SSA for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions is proposed. The spatiotemporal characteristics of femtosecond laser pulses output from the Ti sapphire regenerative amplifier system are experimentally measured by the proposed method. It was found that the complex spatial characteristics are measured accurately.The pulse widths at different spatial positions are various which obey the Gaussian distribution.The pulse width at the same spatial position becomes narrow with the increase in input average power when femtosecond laser pulses pass through a carbon disulfide CS2 nonlinear medium.The experimental results verify that the proposed method is valid for measuring the spatiotemporal characteristics of ultrashort laser pulses at different spatial positions.
文摘The dynamics of molecular rotational wave packets of D2 induced by ultrashort laser pulses was investigated numerically by solving the time-dependent SchrSdinger equation. Results show that an ultrashort pulse can manipulate a coherent rotational wave packet of D2 se- lectively. In the calculation, a first laser pulse was used to create a coherent rotational wave packet from an initial thermal ensemble of D2 at the temperature of 300 K. The second laser pulse was used to manipulate the rotational wave packet selectively around the first quarter and the three quarters revival. The alignment parameter and its Fourier transform amplitude both illustrate that the relative populations of even and odd rotational states in the final rotational wave packet of D2 can be manipulated by precisely selecting the time delay between the first and the second ultrashort pulse.
文摘In this paper, the generalized nonlinear Schrodinger equation (GNLSE) is solved by an adaptive split-step Fourier method (ASSFM). It is found that ASSFM must be used to solve GNLSE to ensure precision when the soliton selffrequency shift is remarkable and the photonic crystal fibre (PCF) parameters vary with the frequency considerably. The precision of numerical simulation by using ASSFM is higher than that by using split-step Fourier method in the process of laser pulse propagation in PCFs due to the fact that the variation of fibre parameters with the peak frequency in the pulse spectrum can be taken into account fully.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CBA01504the National Natural Science Foundation of China under Grant Nos 11475260,11374209 and 11375265
文摘We study a laser wakefield acceleration driven by mid-infrared (mid-IR) laser pulses through two-dimensional particle-in-cell simulations. Since a mid-IR laser pulse can deliver a larger ponderomotive force as compared with the usual 0.8 μm wavelength laser pulse, it is found that electron self-injection into the wake wave occurs at an earlier time, the plasma density threshold for injection becomes lower, and the electron beam charge is substantially enhanced. Meanwhile, our study also shows that quasimonoenergetic electron beams with a narrow energy-spread can be generated by using mid-IR laser pulses. Such a mid-IR laser pulse can provide a feasible method for obtaining a high quality and high charge electron beam. Therefore, the current efforts on constructing mid-IR terawatt laser systems can greatly benefit the laser wakefield acceleration research.
基金Project supported by the Science and Technology Key Program of Shandong Province,China (Grant No. 2008GG10004020)China Postdoctoral Science Foundation (Grant No. AUGA41001348)+1 种基金Heilongjiang Province Postdoctoral Science Foundation(Grant No. AUGA1100074)the Program of Excellent Team in the Harbin Institute of Technology,China
文摘This paper investigates the generation of self-organized surface structures on amorphous alloys by vortex femtosecond laser pulses. The scanning electron microscope characterizations show that the as-formed structures are periodic ripples, aperiodic ripples, and ‘coral-like' structures. Optimal conditions for forming these surface structures are determined in terms of pulses number at a given pulse energy. The applicable mechanism is suggested to interpret the formation and evolution of the 'coral-like' structures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11047145)the Project of Basic and Advanced Technology of Henan Province, China (Grant Nos. 102300410241 and 112300410021)the Scientific Research Foundation of Education Department of Henan Province,China (Grant No. 2011B140018)
文摘Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774039)the Basic Research Program of Education Bureau of Henan Province of China(Grant No.072300410130)
文摘Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.
基金supported by the National Natural Science Foundation of China (Grant No. 10974121)the National Basic Research Program of China (Grant No. 2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)
文摘This paper investigates the effect of Lorentz local field correction (LFC) on the propagation of ultrashort laser pulses in a para-nitroaniline molecular medium under resonant and nonresonant conditions by solving numerically the full-wave Maxwell-Bloch equations beyond slowly-varying envelope approximation and rotating-wave approximation. The effect of the LFC is considerably obvious when pulses with large areas propagate in the dense molecular medium. In the case of resonance, the group velocity of the sub-pulses split from the incident pulse along propagation is severely decreased by the LFC, especially for the latest sub-pulse. However, in the case of nonresonance, the influence of the LFC on the temporal evolution of the pulse is less obvious and lacks homogeneity with an increase in incident pulse area, propagation distance and molecular density.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11764038,11864037,11765018,and 91850209)。
文摘We theoretically investigate the characteristics of terahertz(THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase(CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.
基金Project supported by the National Natural Science Foundation(Grant Nos.11475260,11305264,11622547,11375265,and 11474360)the National Basic Research Program of China(Grant No.2013CBA01504)+1 种基金the Research Project of National University of Defense Technology,China(Contract No.JC14-02-02)the Science Challenge Program,China(Grant No.JCKY2016212A505)
文摘An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propagates in the cylinder, electrons are extracted out of the cylinder inner wall and accelerated to high energies. These energetic electrons later run into the second counter-propagating laser pulse, radiating a large amount of high-energy gamma photons via the Compton back-scattering process. The emitted gamma photons then collide with the second laser pulse to initiate the Breit-Wheeler process for pairs production. Due to the strong self-generated fields in the cylinder, positrons are confined in the channel to form dense pair plasmas. Totally, the maximum density of pair plasmas can be 4.60 × 10^27 m%-3, for lasers with an intensity of 4 × 10^22 W.cm^-2. Both the positron yield and density are tunable by changing the cylinder radius and the laser parameters. The generated dense pair plasmas can further facilitate investigations related to astrophysics and particle physics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974024)the SRFDP, China (Grant No. 20090041110025)
文摘The photoassociation dynamics of ultracold lithium atoms controlled by a cut-off pulse has been investigated theoretically by solving numerically the time-dependent Schr6dinger equation using the mapped Fourier grid method. The frequency components of the laser pulse close to the atomic resonance are partly cut off. Compared with the typical Gauss-type pulses, the cut-off pulse is helpful to suppress efficiently the weakly bound states and prepare the associated molecules in the lower vibrational states. Especially, the dependence of photoassociation probability on the cut-off position of the laser pulse is explored.
基金supported by National Natural Science Foundation of China(Nos.10925421,10735050,10974250,10935002)
文摘Irradiated by femtosecond laser pulses with different energies, opened cone targets behave very differently in the transmission of incident laser pulses. The targets, each with an opening angle of 71° and an opening of 5 μm, are fabricated using standard semiconductor technology. When the incident laser energy is low and no pre-plasma is generated on the side walls of the cones, the cone target acts like an optical device to reflect the laser pulse, and 15% of the laser energy can be transmitted through the cones. In contrast, when the incident laser energy is high enough to generate pre-plasmas by the pre-pulse of the main pulse that fills the inner cone, the cone with the plasmas will block the transmission of the laser, which leads to a decrease in laser transmission compared with the low-energy case with no plasma. Simulation results using optical software in the low-energy case, and using the particle-in-cell code in the high-energy case, are primarily in agreement with the experimental results.
文摘The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark’s numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian’s. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system’s reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser’s thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations;however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922402the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120047+1 种基金the Fundamental Research Funds for the Central Universities under Grant No JB140502the National Natural Science Foundation of China under Grant Nos 11174361 and61205130
文摘A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.
基金supported by the National Natural Science Foundation of China (Grant Nos.10734130,10935002,and 11075105)the National Basic Research Program of China (Grant No.2009GB105002)
文摘Within the framework of plane-wave angular spectrum analysis of the electromagnetic field structure, a solution valid for tightly focused radially polarized few-cycle laser pulses propagating in vacuum is presented. The resulting field distribution is significantly different from that based on the paraxial approximation for pulses with either small or large beam diameters. We compare the electron accelerations obtained with the two solutions and find that the energy gain obtained with our new solution is usually much larger than that with the paraxial approximation solution.
基金Supported by the National Natural Science Foundation of China under Grant No 11404204the Key Project of the Ministry of Education of China under Grant No 211025+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20111404120004the Natural Science Foundation for Young Scientists of Shanxi Province of China under Grant No2009021005
文摘We theoretically investigate the high-order-harmonic generation from the H2^+ molecular ion exposed to the combi- nation of an intense trapezoidal laser and a static field. The results show that the harmonic spectrum is obviously extended and the short quantum path is selected to contribute to the spectrum, because the corresponding long path is seriously suppressed. Then the combined Coulomb and laser field potentials and the time-dependent electron wave packet distributions are applied to illustrate the physical mechanism of high-order harmonic gen- eration. Finally, by adjusting the intensity of the static field and superposing a properly selected range of the HHG spectrum, a 90-as isolated attosecond pulse is straightforwardly obtained.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575077)the Graduate Innovation Fund of Jilin University(Grant No.2017107)
文摘We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that the spectral redshift of highorder harmonics can be observed by adding a weak pulse in the falling part of the trapezoidal laser pulses. Comparing with the H_2~+ molecule, the shift of high-order harmonic generation(HHG) spectrum for the D_2~+ molecule is more obvious.We employ the spatial distribution in HHG and time-frequency analysis to illustrate the physical mechanism of the spectral redshift of high-order harmonics.
基金Project supported by the National Natural Science Foundation of China (Grant No 60478002), and the Basic Research Key Foundation of Shanghai (Grant Nos 04JC14036 and 05DJ14003).
文摘A Fourier analysis method is used to accurately determine not only the absolute phase but also the tempuralpulse phase of an isolated few-cycle (chirped) laser pulse. This method is independent of the pulse shape and can fully characterize the light wave even though only a few samples per optical cycle are available. It pavas the way for investigating the absolute phase-dependent extreme nonlinear optics, and the evolutions of the absolute phase and the temporal-pulse phase of few-cycle laser pulses.
基金Projects supported by the National Natural Science Foundation of China (Grant Nos 10575046 and 10775062)
文摘Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly through tunnel ionization in the combined field from ions, electrons and laser, rather than the electron-impact ionization. With increasing cluster size, the average and maximum kinetic energy of the product ion increases. According to our calculation, the expansion process of the clusters after laser irradiation is dominated by Coulomb explosion and the expansion scale increases with increasing cluster size. The dependence of average kinetic energy and average charge state of the product ions on laser wavelength is also presented and discussed. The dependence of average kinetic energy on the number of atoms inside the cluster was studied and compared with the experimental data. Our results agree with the experimental results reasonably well.