Fe-based amorphous and nanocrystalline coatings were fabricated by air plasma spraying. The coatings were further treated by laser remelting process to improve their microstructure and properties. The corrosion resist...Fe-based amorphous and nanocrystalline coatings were fabricated by air plasma spraying. The coatings were further treated by laser remelting process to improve their microstructure and properties. The corrosion resistance of the as-sprayed and laser-remelted coatings in 3.5wt% NaC1 and 1 mol/L HCI solutions was evaluated by electrochemical polarization analysis. It was found that laser-remelted coating appeared much denser than the as-sprayed coating. However, laser-remelted coating contains much more nanocrystalline grains than the as-sprayed coatings, resulting from the lower cooling rate in laser remelting process compared with plasma spraying process. Electrochemical polarization results indicated that the laser-remelted coating has great corrosion resistance than the as-sprayed coating because of its dense structure.展开更多
Equiatomic CrMnFeCoNi high entropy alloy prepared by powder metallurgy was remelted by laser.The relative density and microstructure of fusion zone are evaluated.The nanoindentation tests are conducted to reveal the h...Equiatomic CrMnFeCoNi high entropy alloy prepared by powder metallurgy was remelted by laser.The relative density and microstructure of fusion zone are evaluated.The nanoindentation tests are conducted to reveal the hardness difference of dendrite arms and interdendritic areas.Tensile tests are conducted to assess the mechanical properties of remelted HEA.After laser remelting,the number and morphology of voids changed significantly.Dendritic structure with face-centered cubic phase form in the fusion zone.Fe,Cr and Co are enriched in dendrite arm,while Mn and Ni are enriched in interdendritic area.Elements segregation led to a nanohardness difference between dendrite arm and interdendritic area.Local deformation occurs in interdendritic area during tensile tests and results in a fracture with directionality.展开更多
Two types of plasma sprayed coatings (NiCrAlY and NiCrAlY-A12O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200-700 W and 5-30 mm/s respectively, t...Two types of plasma sprayed coatings (NiCrAlY and NiCrAlY-A12O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200-700 W and 5-30 mm/s respectively, the melted track grew in width and depth. In the optimum range of laser parameters, a homogeneous remelted layer without voids, cavities, unmelted particles and microcracks was formed. On the surface of remelted layers, Al203 and YAIO3 were detected. As a result of isothermal oxidation tests, weight gains of laser remelted coatings were obviously lower than that only plasma sprayed, especially laser remelted NiCrAlY-Al2O3 coatings. The effects of laser remelting and incorporation of A12O3 second phase in N1CrAlY matrix on high temperature oxidation resistance were discussed.展开更多
Laser surface remelting of steels with different Cr contents has been performed by using a CO_2 laser. The results of oxidation tests showed that the effects of laser remelting on the oxidation resistance of Cr-contai...Laser surface remelting of steels with different Cr contents has been performed by using a CO_2 laser. The results of oxidation tests showed that the effects of laser remelting on the oxidation resistance of Cr-containing steels have close relation to the Cr contents and microstructures of the steels. The re- sistance to high temperature oxidation of 18-8 and HK40 at 1273 K can be obviously improved by laser remelting, whereas laser remelting showed little effect on the oxidation resistance of Fe-6Cr and Cr30 at 1173-1273 K.展开更多
The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of mart...The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of martensite occurs,as well as the refined grains and the more eutectic and compounds with regular morphology are dis- tributed.While the FeBSi coating free from CeO_2 is a sharp constrast in microstructure.展开更多
Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidi...Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 812 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.展开更多
Laser remelting and rapid solidification were performed in preparing the high-performance Al2O3/Y3Al5O12(YAG) eutectic in situ composite. The microstructure characteristic and solidification behavior were studied usin...Laser remelting and rapid solidification were performed in preparing the high-performance Al2O3/Y3Al5O12(YAG) eutectic in situ composite. The microstructure characteristic and solidification behavior were studied using scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffractometry(XRD) and simultaneous thermal analysis(STA). The hardness and fracture toughness were obtained using an indentation technique. The results show that the laser remelted Al2O3/YAG composite has a homogeneous eutectic microstructure without microcrack and pore. The component phases of Al2O3 and YAG are three-dimensionally and continuously reticular connected, and finely coupled without grain boundaries, colonies and amorphous phases between interfaces. The eutectic interspacing is greatly refined with increasing the scanning rate and average is only 1 μm. The synthetically thermal analysis indicates that the eutectic temperature of Al2O3-YAG is 1 824 ℃, well matching the phase diagram of Al2O3-Y2O3 system. The maximum hardness reaches 19.5 GPa and the room fracture toughness is 3.6 MPa·m1/2.展开更多
The corrosion behavior of High-Velocity Oxygen Fuel (HVOF) sprayed MCrAlY coatings obtained from CoNiCrAlY particles (wt. 8% Al) mechanically doped with Al2O3 nanopowder was investigated before and after laser remelti...The corrosion behavior of High-Velocity Oxygen Fuel (HVOF) sprayed MCrAlY coatings obtained from CoNiCrAlY particles (wt. 8% Al) mechanically doped with Al2O3 nanopowder was investigated before and after laser remelting. The latter process was applied in order to achieve a homogeneous structure as well as better mechanical properties for the coating (reduced brittleness offered by the presence of the Al2O3 nanoparticles). Another important task of the laboratory investigations was the investigation of the corrosion behavior of the modified coatings. The results obtained from the potentiodynamic polarization measurements carried out in a chloride environment revealed an enhanced corrosion resistance of the laser remelted coatings comprising a refined microstructure. Microhardness measurements of the modified coatings revealed lower values in comparison with that of the samples in as-sprayed status. This observation leads to the assumption that a concomitant improvement of coatings ductility occurred as well.展开更多
FeCrAlCu,FeCrAlCuNi,FeCrAlCuCo,and FeCrAlCuNiCo high-entropy alloy(HEA)coatings were synthesized on the surface of 45#steel through cold spraying-assisted laser remelting.Results reveal that all four HEA coatings are ...FeCrAlCu,FeCrAlCuNi,FeCrAlCuCo,and FeCrAlCuNiCo high-entropy alloy(HEA)coatings were synthesized on the surface of 45#steel through cold spraying-assisted laser remelting.Results reveal that all four HEA coatings are composed of face-centered cubic+body-centered cubic phases.Additionally,the microstructure of the coatings consists of columnar dendrites.With the simultaneous addition of both Ni and Co elements,the columnar dendritic grains are gradually refined in the coating.Moreover,the FeCrAlCuNiCo HEA coating exhibits excellent friction performance with the coating hardness of 5847.7 MPa,friction factor of 0.45,and wear rate of 3.72×10^(−5) mm^(3)·N^(−1)·m^(−1).The predominant wear mechanism is the adhesive wear and abrasive wear.展开更多
High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this stu...High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this study,AlCoCrFe Ni(TiN)_(x)(x:molar ratio;x=0,0.2,0.4,0.6,0.8,1.0)HEA coatings were fabricated on Q235 steel by plasma spray first and then subjected to laser remelting.The experimental results confirm that plasma spray together with post laser remelting could result in the in-situ formation of TiN-Al_(2)O_(3) ceramic particles and cuboidal B2 phase in the AlCoCrFeNi(TiN)_(x) HEA coatings.The in-situ TiN-Al_(2)O_(3) and nano-cuboidal B2 precipitation phase strengthened the coatings and improved their wearresistance properties.Due to the dispersion of hard phase and nano-particles resulting from second heating,the microhardness of the Al Co Cr Fe Ni(Ti N)coatings significantly increased from 493 to 851 HV after laser remelting.For the same reasons,the wear-resistance performance was also significantly promoted after laser remelting.展开更多
A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properti...A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA.展开更多
Arc additive manufacturing is a high-productivity and low-cost technology for directly fabricating fully dense metallic components.However,this technology with high deposit rate would cause degradation of dimensional ...Arc additive manufacturing is a high-productivity and low-cost technology for directly fabricating fully dense metallic components.However,this technology with high deposit rate would cause degradation of dimensional accuracy and surface quality of the metallic component.A novel hybrid additive manufacturing technology by combining the benefit of directed energy deposition and laser remelting is developed.This hybrid technology is successfully utilized to fabricate 316L component with excellent surface quality.Results show that laser remelting can largely increase the amount ofδphases and eliminateσphases in additive manufacturing 316L component surface due to the rapid cooling.This leads to the formation of remelting layer with higher microhardness and excellent corrosion resistance when compared to the steel made by directed energy deposition only.Increasing laser remelting power can improve surface quality as well as corrosion resistance,but degrade microhardness of remelting layer owing to the decrease inδphases.展开更多
High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classifi...High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classification Society: Grade B (CCS-B). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS), Vickers hardness tester and corrosion resistance tester were employed to characterize microstructures and evaluate properties of this coating. According to the results of SEM, XRD and TEM, the cladding coating consisted of nanocrystalline embedded in amorphous phase. EDS data indicated that Nb segregated in the amorphous matrix. The results of hardness test revealed that the hardness of the top layer was higher than that of the inner layer of the coating. The coating exhibited excellent corrosion resistance in a 3.5% NaCl solution.展开更多
Laser remelting(LR)has attracted widespread attention in recent years as an effective method to reduce internal defects and improve the surface quality of additively manufactured(AM)parts.In the present study,three di...Laser remelting(LR)has attracted widespread attention in recent years as an effective method to reduce internal defects and improve the surface quality of additively manufactured(AM)parts.In the present study,three different LR inter-layer scanning strategies(LR0,LR90 and LR45)and their effects on the porosity,microstructure,crystallographic texture and related mechanical properties of parts have been studied.Optical microscope,X-ray diffraction,and scanning electron microscope were used as characterization tools.In the LR90 sample,it shows obvious{111}<110>texture and strong<111>preferred orientation along the scanning direction(SD),while the 0°offset and the 45°rotation of LR scanning strategy form a finer microstructure and weak crystallographic texture.Meanwhile,the mechanical properties of the LR sample are improved compared with the sample only by laser metal deposition(LMD),and a combination of higher strength and optimal uniform elongation is obtained in the LR45 sample.The overall results show that a reasonable LR scanning strategy can reduce the anisotropy of AM parts and improve their mechanical properties.展开更多
Many processes may be used for manufacturing functionally graded materials.Among them,additive manufacturing seems to be predestined due to near-net shape manufacturing of complex geometries combined with the possibil...Many processes may be used for manufacturing functionally graded materials.Among them,additive manufacturing seems to be predestined due to near-net shape manufacturing of complex geometries combined with the possibility of applying different materials in one component.By adjusting the powder composition of the starting material layer by layer,a macroscopic and step-like gradient can be achieved.To further improve the step-like gradient,an enhancement of the in-situ mixing degree,which is limited according to the state of the art,is necessary.In this paper,a novel technique for an enhancement of the in-situ material mixing degree in the melt pool by applying laser remelting(LR)is described.The effect of layer-wise LR on the formation of the interface was investigated using pure copper and low-alloy steel in a laser powder bed fusion process.Subsequent cross-sectional selective electron microscopic analyses were carried out.By applying LR,the mixing degree was enhanced,and the reaction zone thickness between the materials was increased.Moreover,an additional copper and iron-based phase was formed in the interface,resulting in a smoother gradient of the chemical composition than the case without LR.The Marangoni convection flow and thermal diffusion are the driving forces for the observed effect.展开更多
Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave COa laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remel...Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave COa laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remelted layer by optical microscope shows that the laser remelted layer consists of three zones, which is the melting zone, the transition zone and the heat affected zone. The size of the dendrite of the melting zone is only in the 1/10 to 1/30 range of that of the substrate. The distribution of the hardness of the laser remelted layer was detected, and the carrying capacity of rolling steel was also field-tested. The results show that both the hardness of the remelted layer and the carrying capacity all increase, especially, the carrying capacity was 50% increased compared with the substrate.展开更多
The influence of additive silica on the microstructure of plasma sprayed Al2O3 and Al2O3+13 wt pct TiO2 ceramiccoatings at laser melting has been investigated in this study. At the laser melting, additive silica in Al...The influence of additive silica on the microstructure of plasma sprayed Al2O3 and Al2O3+13 wt pct TiO2 ceramiccoatings at laser melting has been investigated in this study. At the laser melting, additive silica in Al2O3 ceramiccoating can reduce the stress of cooling shrinkage generated during solidification. Moreover, silica can render finersize of grains of the melting layer and form continuous glassy matter around the grain boundaries so as to reducefurther the cooling stresses and to suppress the formation and spreading of cracks. On the other hand, at the lasermelting, TiO2 reacts with Al2O3 and transforms into TiAl2O5. The latter new phase has great and anisotropiccoefficients of thermal expansion leading to big and asymmetrical stresses and thus to form cracks in the meltinglayer of Al2O3+13 wt pet TiO2 coating. Due to the fact that the influence of additive silica on the suppression of theformation of cracks is rather limited and cannot counterbalance the negative effect of TiAl2O5, thus the melting layerof Al2O3+13 wt pct TiO2 coating doped with 3 wt pct SiO2 cracks also. Nevertheless, TiO2 can greatly developthe wear resistance of the ceramic coating as sprayed or laser melted.展开更多
Laser remelting experiments were performed by a 1.0?kW continuous CO 2 laser to investigate the rapid solidification behavior of Zn rich Zn Ag peritectic alloys. Three kinds of microstructures occurrs with the varying...Laser remelting experiments were performed by a 1.0?kW continuous CO 2 laser to investigate the rapid solidification behavior of Zn rich Zn Ag peritectic alloys. Three kinds of microstructures occurrs with the varying of laser scanning speed and Ag content in the alloys. It is mainly plate like single phase cellular η when the Ag content was lower than 1.8% (mole fraction). As the Ag content increased, instead of typical structure of primary dendrites of ε surrounded by peritectic η , a two phase plate like η+ε with primary dendrites of ε is found when the laser scanning speed was higher than a critical value. Intercellular spacing of cellular η or interphase spacing of two phase couple growth η+ε decreases with increasing laser scanning speed.展开更多
基金Funded by the Special Found for Basic Scientific Research of Central Colleges,Chang'an University(2014G1311093)the AQSIQ Technology Program Project(2013QK111)
文摘Fe-based amorphous and nanocrystalline coatings were fabricated by air plasma spraying. The coatings were further treated by laser remelting process to improve their microstructure and properties. The corrosion resistance of the as-sprayed and laser-remelted coatings in 3.5wt% NaC1 and 1 mol/L HCI solutions was evaluated by electrochemical polarization analysis. It was found that laser-remelted coating appeared much denser than the as-sprayed coating. However, laser-remelted coating contains much more nanocrystalline grains than the as-sprayed coatings, resulting from the lower cooling rate in laser remelting process compared with plasma spraying process. Electrochemical polarization results indicated that the laser-remelted coating has great corrosion resistance than the as-sprayed coating because of its dense structure.
基金This research is supported by the National Key R&D Program of China(Grant No.2017YFB0305005).
文摘Equiatomic CrMnFeCoNi high entropy alloy prepared by powder metallurgy was remelted by laser.The relative density and microstructure of fusion zone are evaluated.The nanoindentation tests are conducted to reveal the hardness difference of dendrite arms and interdendritic areas.Tensile tests are conducted to assess the mechanical properties of remelted HEA.After laser remelting,the number and morphology of voids changed significantly.Dendritic structure with face-centered cubic phase form in the fusion zone.Fe,Cr and Co are enriched in dendrite arm,while Mn and Ni are enriched in interdendritic area.Elements segregation led to a nanohardness difference between dendrite arm and interdendritic area.Local deformation occurs in interdendritic area during tensile tests and results in a fracture with directionality.
文摘Two types of plasma sprayed coatings (NiCrAlY and NiCrAlY-A12O3) were remelted by a 5 kW cw CO2 laser. With increasing laser power and decreasing traverse speed in the ranges of 200-700 W and 5-30 mm/s respectively, the melted track grew in width and depth. In the optimum range of laser parameters, a homogeneous remelted layer without voids, cavities, unmelted particles and microcracks was formed. On the surface of remelted layers, Al203 and YAIO3 were detected. As a result of isothermal oxidation tests, weight gains of laser remelted coatings were obviously lower than that only plasma sprayed, especially laser remelted NiCrAlY-Al2O3 coatings. The effects of laser remelting and incorporation of A12O3 second phase in N1CrAlY matrix on high temperature oxidation resistance were discussed.
文摘Laser surface remelting of steels with different Cr contents has been performed by using a CO_2 laser. The results of oxidation tests showed that the effects of laser remelting on the oxidation resistance of Cr-containing steels have close relation to the Cr contents and microstructures of the steels. The re- sistance to high temperature oxidation of 18-8 and HK40 at 1273 K can be obviously improved by laser remelting, whereas laser remelting showed little effect on the oxidation resistance of Fe-6Cr and Cr30 at 1173-1273 K.
文摘The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of martensite occurs,as well as the refined grains and the more eutectic and compounds with regular morphology are dis- tributed.While the FeBSi coating free from CeO_2 is a sharp constrast in microstructure.
基金Project (PolyU 5 171/0 1E)supportedbytheResearchGrantsCounciloftheHongKongSpecialAdministrativeRegion China
文摘Nickel and chromium coatings were produced on the copper sheet using plasma spraying and laser remelting. The sliding wear test was achieved on a block-on-ring tester and the corrosion test was carried out in an acidic atmosphere. The corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. The experimental results show that the nickel and chromium coatings display better wear resistance and corrosion resistance relative to the original pure copper sample. The wear resistance of the coatings is 812 times as large as original samples, and the wear resistance of laser remelted samples is better than that of plasma sprayed ones. The corrosion resistance of laser remelted nickel and chromium samples is better than that of plasma sprayed samples respectively. The corrosion rate of chromium coatings is less than that of nickel coatings, and the laser remelted Cr coating exhibits the least corrosion rate.
基金Project(50102004) supported by the National Natural Science Foundation of ChinaProject(04G53048) supported by the Aeronautical Science Foundation of China+2 种基金Project(20040699035) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(W018101) supported by the Research Fund of Northwestern Polytechnical University, ChinaProject supported by the Developing Program for Outstanding Persons in Northwestern Polytechnical University, China
文摘Laser remelting and rapid solidification were performed in preparing the high-performance Al2O3/Y3Al5O12(YAG) eutectic in situ composite. The microstructure characteristic and solidification behavior were studied using scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), X-ray diffractometry(XRD) and simultaneous thermal analysis(STA). The hardness and fracture toughness were obtained using an indentation technique. The results show that the laser remelted Al2O3/YAG composite has a homogeneous eutectic microstructure without microcrack and pore. The component phases of Al2O3 and YAG are three-dimensionally and continuously reticular connected, and finely coupled without grain boundaries, colonies and amorphous phases between interfaces. The eutectic interspacing is greatly refined with increasing the scanning rate and average is only 1 μm. The synthetically thermal analysis indicates that the eutectic temperature of Al2O3-YAG is 1 824 ℃, well matching the phase diagram of Al2O3-Y2O3 system. The maximum hardness reaches 19.5 GPa and the room fracture toughness is 3.6 MPa·m1/2.
文摘The corrosion behavior of High-Velocity Oxygen Fuel (HVOF) sprayed MCrAlY coatings obtained from CoNiCrAlY particles (wt. 8% Al) mechanically doped with Al2O3 nanopowder was investigated before and after laser remelting. The latter process was applied in order to achieve a homogeneous structure as well as better mechanical properties for the coating (reduced brittleness offered by the presence of the Al2O3 nanoparticles). Another important task of the laboratory investigations was the investigation of the corrosion behavior of the modified coatings. The results obtained from the potentiodynamic polarization measurements carried out in a chloride environment revealed an enhanced corrosion resistance of the laser remelted coatings comprising a refined microstructure. Microhardness measurements of the modified coatings revealed lower values in comparison with that of the samples in as-sprayed status. This observation leads to the assumption that a concomitant improvement of coatings ductility occurred as well.
基金Supported by China National Nuclear Power Plant Operation(QS4FY-22003224)。
文摘FeCrAlCu,FeCrAlCuNi,FeCrAlCuCo,and FeCrAlCuNiCo high-entropy alloy(HEA)coatings were synthesized on the surface of 45#steel through cold spraying-assisted laser remelting.Results reveal that all four HEA coatings are composed of face-centered cubic+body-centered cubic phases.Additionally,the microstructure of the coatings consists of columnar dendrites.With the simultaneous addition of both Ni and Co elements,the columnar dendritic grains are gradually refined in the coating.Moreover,the FeCrAlCuNiCo HEA coating exhibits excellent friction performance with the coating hardness of 5847.7 MPa,friction factor of 0.45,and wear rate of 3.72×10^(−5) mm^(3)·N^(−1)·m^(−1).The predominant wear mechanism is the adhesive wear and abrasive wear.
基金Natural Science Foundation of Liaoning Province(No.2019-MS-247)Liao Ning Revitalization Talents Program(No.XLYC1807178)+1 种基金Research Fund of the State Key Laboratory of Solidification Processing(No.SKLSP202011)International Cooperation Project of Guangdong Province(No.2021A0505030052)。
文摘High-entropy alloy(HEA)coatings are of great importance in the fabrication of wear resistance materials.HEA coatings containing ceramic particles as reinforcement phase usually have better wear performance.In this study,AlCoCrFe Ni(TiN)_(x)(x:molar ratio;x=0,0.2,0.4,0.6,0.8,1.0)HEA coatings were fabricated on Q235 steel by plasma spray first and then subjected to laser remelting.The experimental results confirm that plasma spray together with post laser remelting could result in the in-situ formation of TiN-Al_(2)O_(3) ceramic particles and cuboidal B2 phase in the AlCoCrFeNi(TiN)_(x) HEA coatings.The in-situ TiN-Al_(2)O_(3) and nano-cuboidal B2 precipitation phase strengthened the coatings and improved their wearresistance properties.Due to the dispersion of hard phase and nano-particles resulting from second heating,the microhardness of the Al Co Cr Fe Ni(Ti N)coatings significantly increased from 493 to 851 HV after laser remelting.For the same reasons,the wear-resistance performance was also significantly promoted after laser remelting.
文摘A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA.
基金This work was supported by Beijing Municipal Science&Technology Program(Grant No.Z181100003318001).
文摘Arc additive manufacturing is a high-productivity and low-cost technology for directly fabricating fully dense metallic components.However,this technology with high deposit rate would cause degradation of dimensional accuracy and surface quality of the metallic component.A novel hybrid additive manufacturing technology by combining the benefit of directed energy deposition and laser remelting is developed.This hybrid technology is successfully utilized to fabricate 316L component with excellent surface quality.Results show that laser remelting can largely increase the amount ofδphases and eliminateσphases in additive manufacturing 316L component surface due to the rapid cooling.This leads to the formation of remelting layer with higher microhardness and excellent corrosion resistance when compared to the steel made by directed energy deposition only.Increasing laser remelting power can improve surface quality as well as corrosion resistance,but degrade microhardness of remelting layer owing to the decrease inδphases.
基金Acknowledgements The authors would like to thank the financial support provided by the National Natural Science Foundation of China (No. 50971091 ), the Ministry of the Science and Technology of the People' s Republic of China ( No. 2009DFB50350 ) and the Economy and Information Commission of Shanghai Municipality (No. zx08089).
文摘High power laser cladding of [ ( Fe0. 5 Co0. 5 ) 0. 75 B0. 2 Si0.05 ] 95. 7 Nb4. 3 powder mixture afier-remelting was performed to fabricate Fe-based metallic glass coating on the surface of steel of China Classification Society: Grade B (CCS-B). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) with energy dispersive spectrometer (EDS), Vickers hardness tester and corrosion resistance tester were employed to characterize microstructures and evaluate properties of this coating. According to the results of SEM, XRD and TEM, the cladding coating consisted of nanocrystalline embedded in amorphous phase. EDS data indicated that Nb segregated in the amorphous matrix. The results of hardness test revealed that the hardness of the top layer was higher than that of the inner layer of the coating. The coating exhibited excellent corrosion resistance in a 3.5% NaCl solution.
基金supported by the National Natural Science Foundation of China(No.51975112)Fundamental Research Funds for Central Universities(Nos.N180305032,N2103007)supported by the Liao Ning Revitalization Talents Program(No.XLYC1807063)。
文摘Laser remelting(LR)has attracted widespread attention in recent years as an effective method to reduce internal defects and improve the surface quality of additively manufactured(AM)parts.In the present study,three different LR inter-layer scanning strategies(LR0,LR90 and LR45)and their effects on the porosity,microstructure,crystallographic texture and related mechanical properties of parts have been studied.Optical microscope,X-ray diffraction,and scanning electron microscope were used as characterization tools.In the LR90 sample,it shows obvious{111}<110>texture and strong<111>preferred orientation along the scanning direction(SD),while the 0°offset and the 45°rotation of LR scanning strategy form a finer microstructure and weak crystallographic texture.Meanwhile,the mechanical properties of the LR sample are improved compared with the sample only by laser metal deposition(LMD),and a combination of higher strength and optimal uniform elongation is obtained in the LR45 sample.The overall results show that a reasonable LR scanning strategy can reduce the anisotropy of AM parts and improve their mechanical properties.
文摘Many processes may be used for manufacturing functionally graded materials.Among them,additive manufacturing seems to be predestined due to near-net shape manufacturing of complex geometries combined with the possibility of applying different materials in one component.By adjusting the powder composition of the starting material layer by layer,a macroscopic and step-like gradient can be achieved.To further improve the step-like gradient,an enhancement of the in-situ mixing degree,which is limited according to the state of the art,is necessary.In this paper,a novel technique for an enhancement of the in-situ material mixing degree in the melt pool by applying laser remelting(LR)is described.The effect of layer-wise LR on the formation of the interface was investigated using pure copper and low-alloy steel in a laser powder bed fusion process.Subsequent cross-sectional selective electron microscopic analyses were carried out.By applying LR,the mixing degree was enhanced,and the reaction zone thickness between the materials was increased.Moreover,an additional copper and iron-based phase was formed in the interface,resulting in a smoother gradient of the chemical composition than the case without LR.The Marangoni convection flow and thermal diffusion are the driving forces for the observed effect.
文摘Laser surface remelting of medium Ni-Cr infinite chilling cast iron was performed with a continuous wave COa laser beam with the power of 7 KW under the argon shielding. The microstructural analysis of the laser remelted layer by optical microscope shows that the laser remelted layer consists of three zones, which is the melting zone, the transition zone and the heat affected zone. The size of the dendrite of the melting zone is only in the 1/10 to 1/30 range of that of the substrate. The distribution of the hardness of the laser remelted layer was detected, and the carrying capacity of rolling steel was also field-tested. The results show that both the hardness of the remelted layer and the carrying capacity all increase, especially, the carrying capacity was 50% increased compared with the substrate.
基金This work was supported by Doctoral Foundation of Ministry of Education of China (Grant No: D1-102-072) by the Natural Sciences Foundation of Guangdong Province (Grant No: 970253).
文摘The influence of additive silica on the microstructure of plasma sprayed Al2O3 and Al2O3+13 wt pct TiO2 ceramiccoatings at laser melting has been investigated in this study. At the laser melting, additive silica in Al2O3 ceramiccoating can reduce the stress of cooling shrinkage generated during solidification. Moreover, silica can render finersize of grains of the melting layer and form continuous glassy matter around the grain boundaries so as to reducefurther the cooling stresses and to suppress the formation and spreading of cracks. On the other hand, at the lasermelting, TiO2 reacts with Al2O3 and transforms into TiAl2O5. The latter new phase has great and anisotropiccoefficients of thermal expansion leading to big and asymmetrical stresses and thus to form cracks in the meltinglayer of Al2O3+13 wt pet TiO2 coating. Due to the fact that the influence of additive silica on the suppression of theformation of cracks is rather limited and cannot counterbalance the negative effect of TiAl2O5, thus the melting layerof Al2O3+13 wt pct TiO2 coating doped with 3 wt pct SiO2 cracks also. Nevertheless, TiO2 can greatly developthe wear resistance of the ceramic coating as sprayed or laser melted.
文摘Laser remelting experiments were performed by a 1.0?kW continuous CO 2 laser to investigate the rapid solidification behavior of Zn rich Zn Ag peritectic alloys. Three kinds of microstructures occurrs with the varying of laser scanning speed and Ag content in the alloys. It is mainly plate like single phase cellular η when the Ag content was lower than 1.8% (mole fraction). As the Ag content increased, instead of typical structure of primary dendrites of ε surrounded by peritectic η , a two phase plate like η+ε with primary dendrites of ε is found when the laser scanning speed was higher than a critical value. Intercellular spacing of cellular η or interphase spacing of two phase couple growth η+ε decreases with increasing laser scanning speed.