Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ...Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.展开更多
We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved AT...We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.展开更多
Influence produced by the heat effect at work of the laser instrument crystal of the semiconductor, the text designs a kind of temperature control system to the crystal of the laser instrument, using the thought and m...Influence produced by the heat effect at work of the laser instrument crystal of the semiconductor, the text designs a kind of temperature control system to the crystal of the laser instrument, using the thought and method of the classical control theory to analyze this temperature control system, and establishes mathematics model. According to mathematics model the text demonstrated the system at S field and time- area, and proposed optimizing basis to the total mark of proportion and differential parameter to con- troller PID, thus proposed a kind of temperature control scheme. And the thermostatically system is simulated by MATLAB.展开更多
The optimum theory and methods were adopted to design the laser beam riding guidance anti tank missile's control system in the short run. Through building the mathematical model of system, selecting a proper meth...The optimum theory and methods were adopted to design the laser beam riding guidance anti tank missile's control system in the short run. Through building the mathematical model of system, selecting a proper method and taking advantage of computer's high speed calculation and logic traits, an optimal controller was designed. Simulation results showed that the designed control system has fair performance and it satisfies the tactical and technical requirements. The results also demonstrate that by the combination of the optimizing methods and the computer the control system could be designed as soon as possible.展开更多
Steel matrix composites(SMCs)reinforced with WC particles were fabricated via selective laser melting(SLM)by employing various laser scan strategies.A detailed relationship between the SLM strategies,defect formation,...Steel matrix composites(SMCs)reinforced with WC particles were fabricated via selective laser melting(SLM)by employing various laser scan strategies.A detailed relationship between the SLM strategies,defect formation,microstructural evolution,and mechanical properties of SMCs was established.The laser scan strategies can be manipulated to deliberately alter the thermal history of SMC during SLM processing.Particularly,the involved thermal cycling,which encompassed multiple layers,strongly affected the processing quality of SMCs.Sshaped scan sequence combined with interlayer offset and orthogonal stagger mode can effectively eliminate the metallurgical defects and retained austenite within the produced SMCs.However,due to large thermal stress,microcracks that were perpendicular to the building direction formed within the SMCs.By employing the checkerboard filling(CBF)hatching mode,the thermal stress arising during SLM can be significantly reduced,thus preventing the evolution of interlayer microcracks.The compressive properties of fabricated SMCs can be tailored at a high compressive strength(~3031.5 MPa)and fracture strain(~24.8%)by adopting the CBF hatching mode combined with the optimized scan sequence and stagger mode.This study demonstrates great feasibility in tuning the mechanical properties of SLM-fabricated SMCs without varying the set energy input,e.g.,laser power and scanning speed.展开更多
An automatic seam tracking system used in submerged arc welding is presented.In the system, the linear CCD vision sensor is installed in front of the welding torch. Laserstructure light emitted by the semiconductor la...An automatic seam tracking system used in submerged arc welding is presented.In the system, the linear CCD vision sensor is installed in front of the welding torch. Laserstructure light emitted by the semiconductor laser irradiates on a slant to work-piece surface andforms a structure light strip on work-piece surface. Scatter light of the strip is received bylinear CCD on top of the seam and the image information of seam can be obtained. By way of imageprocessing and applying Fuzzy-P controller in tracking process, automatic seam tracking has beenrealized accurately. Anti-disturbing ability of the system to work-piece surface status has beenenhanced largely by classified microadjustment of torch height.展开更多
According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is propose...According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.展开更多
We investigate the quantum motion of two ions stored in a Paul trap and interacting with a time-periodic laser field. In the pseudopotential approximation and large detuning condition, we find that the relative motion...We investigate the quantum motion of two ions stored in a Paul trap and interacting with a time-periodic laser field. In the pseudopotential approximation and large detuning condition, we find that the relative motion is independent of the laser field, but the exact centre-of-mass motion is closely related to the laser field. By adjusting the laser intensity and frequency, we can well control the quantum motion of the centre-of-mass. We illustrate some physical properties described by the centre-of-mass states, such as the squeezed coherent property, the widths and heights of the wavepackets of probability density, the classical-quantum correspondence, the resonance ladders of expectation energy and the transition probabilities between time-dependent quantum levels.展开更多
This paper presents the principle and mathematic model for the 3D depth map method based on space encoding images performed by modulating scanning structuredlight according to time sequences,and the synchro control ...This paper presents the principle and mathematic model for the 3D depth map method based on space encoding images performed by modulating scanning structuredlight according to time sequences,and the synchro control among the camera,laser diode modulation and scanning polyhedron.展开更多
Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher princi...Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.展开更多
Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.Howeve...Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions.展开更多
The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm wit...The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm with I-type arbiter were compared. The improved algorithm can reduce judging time and avoid some mistakes of the basic one. In mapping obstacles, the robot adjusted the spread angle according to different distances to obstacles in scaled vector field histogram (SVFH) algorithm, and then the robot turned more sharply in near obstacles than in far obstacles, which made the robot move more safely and smoothly in a cluttered room.展开更多
We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorpt...We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.展开更多
This paper theoretically investigates the coherent phase control in electron-argon scattering assisted by a bichro- matic laser field. The laser field is composed of a fundamental component and its second harmonic. Th...This paper theoretically investigates the coherent phase control in electron-argon scattering assisted by a bichro- matic laser field. The laser field is composed of a fundamental component and its second harmonic. The incoming and out going states of electron are described by the Volkov wave functions, and the electron-target interaction is treated as a screening potential. Numerical results for differential cross section of multiphoton processes vs the phase difference between the two components of laser field are discussed for several scattering angles and impact energies.展开更多
A novel semiconductor laser system is presented based on a twisted fiber.To study the period-control and chaos-anticontrol of the laser system,we design a type of optic path as a control setup using the combination of...A novel semiconductor laser system is presented based on a twisted fiber.To study the period-control and chaos-anticontrol of the laser system,we design a type of optic path as a control setup using the combination of the twisted fiber and the polarization controller while we present a physical dynamics model of the delayed dual-feedback laser containing the twisted fiber effect.We give an analysis of the effect of the twisted fiber on the laser.We use the effects of the delayed phase and the rotation angle of the twisted fiber and the characteristics of the system to achieve control of the laser.The laser is deduced to a stable state,a double-periodic state,a period-6 state,a period-8 state,a period-9 state,a multi-period state,beat phenomenon,and so on.The periodic laser can be anti-controlled to chaos.Some chaos-anti-control area is found.The laser system is very useful for the study of chaos-control of the laser setup and the applications of some physics effects.展开更多
The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the tr...The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.展开更多
In this paper, the dynamics of coherent laser control of potassium atoms is studied by using the time-dependent multilevel approach (TDMA). The calculation results of population transfer are presented with different...In this paper, the dynamics of coherent laser control of potassium atoms is studied by using the time-dependent multilevel approach (TDMA). The calculation results of population transfer are presented with different laser fields. The results show that the population can be transferred to target state completely by a specially designed laser field.展开更多
We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rat...We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rate of 25 kHz and pulse width of 16 ns was obtained.展开更多
Laser processing provides highly-controlled modification and on-demand fabrication of plasmon metal nanostructures for light absorption and photothermal convention.We present the laser-induced forward tansfer(LIFT)fab...Laser processing provides highly-controlled modification and on-demand fabrication of plasmon metal nanostructures for light absorption and photothermal convention.We present the laser-induced forward tansfer(LIFT)fabrication of silver nanomembranes in control of light absorption.By varying the hatch distance,different morphologies of randomly distributed plasmon silver nanostructures were produced,leading to well-controlled light absorption levels from 11%to 81%over broadband.The anti-reflection features were maintained below 17%.Equilibrated and plain absorptions were obtained throughout all absorption levels with a maximum intensity fluctuation of±8.5%for the 225μJ cases.The 45μJ pulse energy can offer a highly equilibrated absorption at a 60%absorption level with an intensity fluctuation of±1%.Pattern transfer was also achieved on a thin tape surface.The laser-transferred characters and patterns demonstrate a localized temperature rise.A rapid temperature rising of roughly 15℃can be achieved within 1 s.The LIFT process is highly efficiently fabricated with a typical speed value of 10^(3)to 10^(5)cm^(2)/h.The results indicated that LIFT is a well-controlled and efficient method for the production of optical films with specific absorption levels.展开更多
A way is proposed to realize controllable-nuclear fusion by γ-laser or γ-ray and ordinary laser with their certain frequencies and large enough intensities to irradiate a target ball. The function ...A way is proposed to realize controllable-nuclear fusion by γ-laser or γ-ray and ordinary laser with their certain frequencies and large enough intensities to irradiate a target ball. The function of ordinary laser is to heat the target nuclei and to realize the inertial confinement for the target nuclei. The target nuclei absorbing γ-photons will be in a certain excited state. The scattering cross-sections will be larger and the ignition temperature will be lower to realize fusion of the nuclei in their excited states than those of the nuclei in their ground states. In contrast with the nuclei applied in conventional fusion, e.g., deutons and tritons, according to the way, the nuclei applied to fusion should have the following characters: the nuclei have their excited states, one of the excited states has higher energy and longer lifetime, and the masses of the nuclei are lesser. Thus, the Lawson conditions can more easily be realized so that the controllable nuclear fusion is possibly realized by the way.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62275272)the Training Program for Excellent Young Innovators of Changsha(Grant No.KQ2305025)。
文摘Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12104285,12074240,12204135,12374260,12264013,12204136,92250303,and 12074418)the Guangdong Basicand Applied Basic Research Foundation (Grant No.2022A1515011742)+5 种基金the Special Scientific Research Program supported by the Shaanxi Education Department (Grant No.22JK0423)the Natural Science Basic Research Program of Shaanxi Province of China (Grant Nos.2023-JC-QN-0085 and 2023-JC-QN-0267)the Hainan Provincial Natural Science Foundation of China (Grant Nos.122CXTD504,123MS002,123QN179,123QN180,and 122QN217)the Sino-German Mobility Programme (Grant No.M-0031)the Xi’an Aeronautical Institute 2023 Innovation and Entrepreneurship Training Program for college students (Grant No.S202311736036)the Course Ideological and Political Education Program (Grant No.23ZLGC5030)。
文摘We study the above-threshold ionization(ATI)process of atoms exposed to fundamental and high-frequency lasers with arbitrary ellipticity by applying the frequency-domain theory.It is found that the angular-resolved ATI spectrum is sensitive to ellipticities of two lasers and emitted angles of the photoelectron.Particularly for the photon energy of the highfrequency laser more than atomic ionization potential,the width of plateau tends to a constant with increasing ellipticity of fundamental field,the dip structure disappears with increasing ellipticity of the high-frequency field.With the help of the quantum channel analysis,it is shown that the angular distribution depends mainly on the ellipticity of high-frequency field in the case that its frequency is high.Moreover,one can see that the maximal and minimal energies in quantum numerical results are in good agreement with the classical prediction.Our investigation may provide theoretical support for experimental research on polarization control of ionization in elliptically polarized two-color laser fields.
文摘Influence produced by the heat effect at work of the laser instrument crystal of the semiconductor, the text designs a kind of temperature control system to the crystal of the laser instrument, using the thought and method of the classical control theory to analyze this temperature control system, and establishes mathematics model. According to mathematics model the text demonstrated the system at S field and time- area, and proposed optimizing basis to the total mark of proportion and differential parameter to con- troller PID, thus proposed a kind of temperature control scheme. And the thermostatically system is simulated by MATLAB.
文摘The optimum theory and methods were adopted to design the laser beam riding guidance anti tank missile's control system in the short run. Through building the mathematical model of system, selecting a proper method and taking advantage of computer's high speed calculation and logic traits, an optimal controller was designed. Simulation results showed that the designed control system has fair performance and it satisfies the tactical and technical requirements. The results also demonstrate that by the combination of the optimizing methods and the computer the control system could be designed as soon as possible.
基金the National Key Research and Development Program“Additive Manufacturing and Laser Manufacturing”(No.2016YFB1100101)the National Natural Science Foundation of China(No.51735005)+3 种基金the Basic Strengthening Program of Science and Technology(No.2019-JCJQ-JJ-331)the 5th Jiangsu Province 333 High Level Talents Training Project,China(No.BRA2019048)the 15th Batch of“Six Talents Peaks”Innovative Talents Team Program“Laser Precise Additive Manufacturing of Structure-Performance Integrated Lightweight Alloy Components”(No.TD-GDZB-001)and the 2017 Excellent Scientific and Technological Innovation Teams of Universities in Jiangsu“Laser Additive Manufacturing Technologies for Metallic Components”funded by Jiangsu Provincial Department of Education of China(No.51921003).Konrad Kosiba acknowledges the support from DFG under Grant No.KO 5771/1-1.
文摘Steel matrix composites(SMCs)reinforced with WC particles were fabricated via selective laser melting(SLM)by employing various laser scan strategies.A detailed relationship between the SLM strategies,defect formation,microstructural evolution,and mechanical properties of SMCs was established.The laser scan strategies can be manipulated to deliberately alter the thermal history of SMC during SLM processing.Particularly,the involved thermal cycling,which encompassed multiple layers,strongly affected the processing quality of SMCs.Sshaped scan sequence combined with interlayer offset and orthogonal stagger mode can effectively eliminate the metallurgical defects and retained austenite within the produced SMCs.However,due to large thermal stress,microcracks that were perpendicular to the building direction formed within the SMCs.By employing the checkerboard filling(CBF)hatching mode,the thermal stress arising during SLM can be significantly reduced,thus preventing the evolution of interlayer microcracks.The compressive properties of fabricated SMCs can be tailored at a high compressive strength(~3031.5 MPa)and fracture strain(~24.8%)by adopting the CBF hatching mode combined with the optimized scan sequence and stagger mode.This study demonstrates great feasibility in tuning the mechanical properties of SLM-fabricated SMCs without varying the set energy input,e.g.,laser power and scanning speed.
文摘An automatic seam tracking system used in submerged arc welding is presented.In the system, the linear CCD vision sensor is installed in front of the welding torch. Laserstructure light emitted by the semiconductor laser irradiates on a slant to work-piece surface andforms a structure light strip on work-piece surface. Scatter light of the strip is received bylinear CCD on top of the seam and the image information of seam can be obtained. By way of imageprocessing and applying Fuzzy-P controller in tracking process, automatic seam tracking has beenrealized accurately. Anti-disturbing ability of the system to work-piece surface status has beenenhanced largely by classified microadjustment of torch height.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50979093)
文摘According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575034 and 10275023), and the Science Foundation of the Laboratory of Magnetic Resonance and Atomic and Molecular Physics, China (Grant No T152504).
文摘We investigate the quantum motion of two ions stored in a Paul trap and interacting with a time-periodic laser field. In the pseudopotential approximation and large detuning condition, we find that the relative motion is independent of the laser field, but the exact centre-of-mass motion is closely related to the laser field. By adjusting the laser intensity and frequency, we can well control the quantum motion of the centre-of-mass. We illustrate some physical properties described by the centre-of-mass states, such as the squeezed coherent property, the widths and heights of the wavepackets of probability density, the classical-quantum correspondence, the resonance ladders of expectation energy and the transition probabilities between time-dependent quantum levels.
文摘This paper presents the principle and mathematic model for the 3D depth map method based on space encoding images performed by modulating scanning structuredlight according to time sequences,and the synchro control among the camera,laser diode modulation and scanning polyhedron.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774039)the Basic Research Program of Education Bureau of Henan Province of China(Grant No.072300410130)
文摘Using time-dependent multilevel approach (TDML), this paper studies the dynamics of coherent control of Rydberg lithium atoms and demonstrates that Rydberg lithium atoms can be transferred to states of higher principal quantum number by exposing them to specially designed frequency-chirped laser pulses. The population transfer from n=70 to n=75 states of lithium atoms with efficiency more than 90% is achieved by means of the sequential adiabatic rapid passages. The results agree well with the experimental ones and show that the coherent control of the population transfer from the lower n to the higher n states can be accomplished by the optimization of the chirping parameters and the intensity of laser field.
基金This work was supported by the Shanghai Aerospace Science&Technology Innovation Fund[grant number SAST201363],and the Fundamental Research Funds for the Central Universities[grant number 30919012102 in part]We gratefully acknowledge the technical support provided by Hao-yu Wang,Wei-kang Chen and Zhi-jing Xu(Shanghai Space Propulsion Technology Research Institute,China).
文摘Microsatellites have been widely applied in the fields of communication,remote sensing,navigation and science exploration due to its characteristics of low cost,flexible launch mode and short development period.However,conventional solid-propellant have difficulties in starting and interrupting combustion because combustion is autonomously sustained after ignition Herein,we proposed a new type of solid-propellant named laser-controlled solid propellant,which is sensitive to laser irradiation and can be started or interrupted by switching on/off the continuous wave laser.To demonstrate the feasibility and investigate the controllable combustion behaviors under different laser on/off conditions,the combus tion parameters including burning rate,ignition delay time and platform pressure were tested using pressure sensor,high-speed camera and thermographic camera.The results showed that the increase of laser-on or laser-off duration both will lead to the decrease of propellant combustion performance during re-ignition and re-combustion process.This is mainly attributed to the laser attenuation caused by the accumulation of combustion residue and the change of chamber ambient temperature.Simultaneously the multiple ignition tests revealed that the increased chamber ambient temperature after combustion can make up for the energy loss of laser attenuation and expansion of chamber cavity.However,the laser-controlled combustion performance of solid propellant displayed a decrease trend with the addi-tion of ignition times.Nevertheless,the results still exchibited good laser-controlled agility of laser-controlled solid propellant and manifested its inspiring potential in many aspects of space missions.
基金National Natural Science Foundation of China(No.60975059)Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(No.J513032)Innovation Program of Shanghai Municipal Education Commission,China(No.09YZ343)
文摘The software of behaviour-based algorithm~ was parted to several functional modules which represented different behaviours with different priorities. A basic algorithm with S-type arbiter and an improved algorithm with I-type arbiter were compared. The improved algorithm can reduce judging time and avoid some mistakes of the basic one. In mapping obstacles, the robot adjusted the spread angle according to different distances to obstacles in scaled vector field histogram (SVFH) algorithm, and then the robot turned more sharply in near obstacles than in far obstacles, which made the robot move more safely and smoothly in a cluttered room.
文摘We theoretically analyze the transient properties of a probe field absorption and dispersion in a coupled semiconductor double-quantum-dot nanostructure.We show that in the presence of the Gaussian laser beams,absorption and dispersion of the probe field can be dramatically influenced by the relative phase between applied fields and intensity of the Gaussian laser beams.Transient and steady-state behaviors of the probe field absorption and dispersion are discussed to estimate the required switching time.The estimated range is between 5-8 ps for subluminal to superluminal light propagation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874169 and 10674125)the National Basic Research Program of China (Grant No. 2007CB925200)S.-M. Li is grateful to Deutscher Akademischer Austauschdienst and Deutsche Forschungsgemeinschaft for financial support during his stay in Germany
文摘This paper theoretically investigates the coherent phase control in electron-argon scattering assisted by a bichro- matic laser field. The laser field is composed of a fundamental component and its second harmonic. The incoming and out going states of electron are described by the Volkov wave functions, and the electron-target interaction is treated as a screening potential. Numerical results for differential cross section of multiphoton processes vs the phase difference between the two components of laser field are discussed for several scattering angles and impact energies.
文摘A novel semiconductor laser system is presented based on a twisted fiber.To study the period-control and chaos-anticontrol of the laser system,we design a type of optic path as a control setup using the combination of the twisted fiber and the polarization controller while we present a physical dynamics model of the delayed dual-feedback laser containing the twisted fiber effect.We give an analysis of the effect of the twisted fiber on the laser.We use the effects of the delayed phase and the rotation angle of the twisted fiber and the characteristics of the system to achieve control of the laser.The laser is deduced to a stable state,a double-periodic state,a period-6 state,a period-8 state,a period-9 state,a multi-period state,beat phenomenon,and so on.The periodic laser can be anti-controlled to chaos.Some chaos-anti-control area is found.The laser system is very useful for the study of chaos-control of the laser setup and the applications of some physics effects.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the Beijing Municipal Natural Science Foundation,China (Grant Nos. 4092007,4112006,4102003,and 4132006)+1 种基金the National Natural Science Foundation of China (Grant Nos. 61076044,61036002,61036009,and 60978067)the Doctoral Fund of the Ministry of Education of China (Grant No. 20121103110018)
文摘The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.
基金Project supported by the Natural Science Foundation of Henan province, China (Grant No 0411011900).
文摘In this paper, the dynamics of coherent laser control of potassium atoms is studied by using the time-dependent multilevel approach (TDMA). The calculation results of population transfer are presented with different laser fields. The results show that the population can be transferred to target state completely by a specially designed laser field.
文摘We demonstrated a monolithic, compact, diode-pumped gain-switched Nd:YVO4 laser at 1.064 μm wavelength with controllable repetition rate of 1 Hz to 25 kHz. Stable gain-switched pulse train with maximum repetition rate of 25 kHz and pulse width of 16 ns was obtained.
基金Projects(61704090, 11904177) supported by the National Natural Science Foundation of ChinaProject(KFJJ20210205) supported by the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications,China。
文摘Laser processing provides highly-controlled modification and on-demand fabrication of plasmon metal nanostructures for light absorption and photothermal convention.We present the laser-induced forward tansfer(LIFT)fabrication of silver nanomembranes in control of light absorption.By varying the hatch distance,different morphologies of randomly distributed plasmon silver nanostructures were produced,leading to well-controlled light absorption levels from 11%to 81%over broadband.The anti-reflection features were maintained below 17%.Equilibrated and plain absorptions were obtained throughout all absorption levels with a maximum intensity fluctuation of±8.5%for the 225μJ cases.The 45μJ pulse energy can offer a highly equilibrated absorption at a 60%absorption level with an intensity fluctuation of±1%.Pattern transfer was also achieved on a thin tape surface.The laser-transferred characters and patterns demonstrate a localized temperature rise.A rapid temperature rising of roughly 15℃can be achieved within 1 s.The LIFT process is highly efficiently fabricated with a typical speed value of 10^(3)to 10^(5)cm^(2)/h.The results indicated that LIFT is a well-controlled and efficient method for the production of optical films with specific absorption levels.
文摘A way is proposed to realize controllable-nuclear fusion by γ-laser or γ-ray and ordinary laser with their certain frequencies and large enough intensities to irradiate a target ball. The function of ordinary laser is to heat the target nuclei and to realize the inertial confinement for the target nuclei. The target nuclei absorbing γ-photons will be in a certain excited state. The scattering cross-sections will be larger and the ignition temperature will be lower to realize fusion of the nuclei in their excited states than those of the nuclei in their ground states. In contrast with the nuclei applied in conventional fusion, e.g., deutons and tritons, according to the way, the nuclei applied to fusion should have the following characters: the nuclei have their excited states, one of the excited states has higher energy and longer lifetime, and the masses of the nuclei are lesser. Thus, the Lawson conditions can more easily be realized so that the controllable nuclear fusion is possibly realized by the way.