Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).Howev...Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).However,the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously.In this paper,we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD,operating at a pulsed mode,with a repetition rate of 30 kHz,as an excitation source.A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio.By optimizing the optical system,a high lateral resolution of 4.8μm has been achieved.In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.展开更多
Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excita...Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission.In order to generate photoacoustic signal e±-ciently,bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization.As an alternative,the miniaturized semiconductor laser system has the advantages of being inexpensive,compact,and robust,which makes a signi¯cant e®ect on production-forming design.It is also desirable to obtain a wavelength in a wide range from visible to nearinfrared spectrum for multispectral applications.Focussing on practical aspect,this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.展开更多
Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing,medical care,and industrial applications,including laser welding,...Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing,medical care,and industrial applications,including laser welding,cleaning,and manufacturing.A fiber laser can output laser pulses with high energy,a high repetition rate,a controllable wavelength,low noise,and good beam quality,making it applicable in photoacoustic imaging.Herein,recent developments in fiber-laser-based photoacoustic microscopy(PAM)are reviewed.Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser,a stimulated Raman scattering-based laser source,or a fiber-based supercontinuum source for photoacoustic excitation.PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift.Because of their small size and high flexibility,compact head-mounted,wearable,or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.展开更多
Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material inte...Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.展开更多
Surface coatings provide protection to wood products against weathering and other deteriorating factors, such as moisture uptake and microbial invasion. The effectiveness of coatings depends on many factors, including...Surface coatings provide protection to wood products against weathering and other deteriorating factors, such as moisture uptake and microbial invasion. The effectiveness of coatings depends on many factors, including how well the applied coatings adhere to the wood surface. Coating adhesion to wood involves both chemical and physical interactions between the coating and wood tissues in contact, and the particular focus of this mini-review will be on the advances being made in understanding the physical aspects of the interaction by probing wood-coating interface using novel and high resolution imaging techniques, including confocal laser scanning microscopy (CLSM), SEM-backscattered electron imaging and correlative microscopy employing light, confocal and scanning electron microscopy.展开更多
Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but ...Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.展开更多
The recent development of stimulated Raman scattering(SRS) microscopy allows for highly sensitive biological imaging with molecular vibrational contrast, opening up a variety of applications including label-free imagi...The recent development of stimulated Raman scattering(SRS) microscopy allows for highly sensitive biological imaging with molecular vibrational contrast, opening up a variety of applications including label-free imaging,metabolic imaging, and super-multiplex imaging. This paper introduces the principle of SRS microscopy and the methods of multicolor SRS imaging and describes an overview of biomedical applications.展开更多
Two-color multiphoton microscopy through wavelength mixing of synchronized lasers has been shown to increase the spectral window of excitable fluorophores without the need for wavelength tuning.However,most currently ...Two-color multiphoton microscopy through wavelength mixing of synchronized lasers has been shown to increase the spectral window of excitable fluorophores without the need for wavelength tuning.However,most currently available dual output laser sources rely on the costly and complicated optical parametric generation approach.In this report,we detail a relatively simple and low cost diamond Raman laser pumped by a ytterbium fiber amplifier emitting at 1055 nm,which generates a first Stokes emission centered at 1240 nm with a pulse width of 100 fs.The two excitation wavelengths of 1055 and 1240 nm,along with the effective two-color excitation wavelength of 1140 nm,provide an almost complete coverage of fluorophores excitable within the range of 1000–1300 nm.When compared with 1055 nm excitation,two-color excitation at 1140 nm offers a 90%increase in signal for many far-red emitting fluorescent proteins(for example,tdKatushka2).We demonstrate multicolor imaging of tdKatushka2 and Hoechst 33342 via simultaneous two-color two-photon,and two-color three-photon microscopy in engineered 3D multicellular spheroids.We further discuss potential benefits and applications for two-color three-photon excitation.In addition,we show that this laser system is capable of in vivo imaging in mouse cortex to nearly 1 mm in depth with two-color excitation.展开更多
基金Hong Kong Innovation and Technology Commission,No.ITS/036/19Research Grants Council of the Hong Kong Special Administrative Region,No.26203619.
文摘Laser diodes(LDs)have been considered as cost-effective and compact excitation sources to overcome the requirement of costly and bulky pulsed laser sources that are commonly used in photoacoustic microscopy(PAM).However,the spatial resolution and/or imaging speed of previously reported LD-based PAM systems have not been optimized simultaneously.In this paper,we developed a high-speed and high-resolution LD-based PAM system using a continuous wave LD,operating at a pulsed mode,with a repetition rate of 30 kHz,as an excitation source.A hybrid scanning mechanism that synchronizes a one-dimensional galvanometer mirror and a two-dimensional motorized stage is applied to achieve a fast imaging capability without signal averaging due to the high signal-to-noise ratio.By optimizing the optical system,a high lateral resolution of 4.8μm has been achieved.In vivo microvasculature imaging of a mouse ear has been demonstrated to show the high performance of our LD-based PAM system.
基金the National Natural Scienti¯c Foundation of China(11664011,11304129)the Science and Technology Program of Jiangxi,China(20151BAB217025,20132BBG70033,GJJ150790)the Intramural Top-notch Youth Talent Program of JXSTNU,China(2013QNBJRC003).
文摘Photoacoustic imaging,an emerging biomedical imaging modality,holds great promise for preclinical and clinical researches.It combines the high optical contrast and high ultrasound resolution by converting laser excitation into ultrasonic emission.In order to generate photoacoustic signal e±-ciently,bulky Q-switched solid-state laser systems are most commonly used as excitation sources and hence limit its commercialization.As an alternative,the miniaturized semiconductor laser system has the advantages of being inexpensive,compact,and robust,which makes a signi¯cant e®ect on production-forming design.It is also desirable to obtain a wavelength in a wide range from visible to nearinfrared spectrum for multispectral applications.Focussing on practical aspect,this paper reviews the state-of-the-art developments of low-cost photoacoustic system with laser diode and light-emitting diode excitation source and highlights a few representative installations in the past decade.
基金This work was supported by the National Natural Science Foundation of China,Nos.61775083 and 61805102.
文摘Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing,medical care,and industrial applications,including laser welding,cleaning,and manufacturing.A fiber laser can output laser pulses with high energy,a high repetition rate,a controllable wavelength,low noise,and good beam quality,making it applicable in photoacoustic imaging.Herein,recent developments in fiber-laser-based photoacoustic microscopy(PAM)are reviewed.Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser,a stimulated Raman scattering-based laser source,or a fiber-based supercontinuum source for photoacoustic excitation.PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift.Because of their small size and high flexibility,compact head-mounted,wearable,or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.
基金supported by the National Natural Science Foundation of China under Grant Nos.51975054,61605140 and 11704028the National Key R&D Program of China(2017YFB1104300)。
文摘Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.
文摘Surface coatings provide protection to wood products against weathering and other deteriorating factors, such as moisture uptake and microbial invasion. The effectiveness of coatings depends on many factors, including how well the applied coatings adhere to the wood surface. Coating adhesion to wood involves both chemical and physical interactions between the coating and wood tissues in contact, and the particular focus of this mini-review will be on the advances being made in understanding the physical aspects of the interaction by probing wood-coating interface using novel and high resolution imaging techniques, including confocal laser scanning microscopy (CLSM), SEM-backscattered electron imaging and correlative microscopy employing light, confocal and scanning electron microscopy.
基金This study was supported by funding from the Ministry of Education,Culture,Sports,Science,and Technology of Japan:KAKENHI Grant-in-Aid for Scientific Research No.23225006,Nanotechnology Platform(Hokkaido University)and the Low-Carbon Research Network of Japan.
文摘Localized surface plasmon resonance(LSPR)can be supported by metallic nanoparticles and engineered nanostructures.An understanding of the spatially resolved near-field properties and dynamics of LSPR is important,but remains experimentally challenging.We report experimental studies toward this aim using photoemission electron microscopy(PEEM)with high spatial resolution of sub-10 nm.Various engineered gold nanostructure arrays(such as rods,nanodisk-like particles and dimers)are investigated via PEEM using near-infrared(NIR)femtosecond laser pulses as the excitation source.When the LSPR wavelengths overlap the spectrum of the femtosecond pulses,the LSPR is efficiently excited and promotes multiphoton photoemission,which is correlated with the local intensity of the metallic nanoparticles in the near field.Thus,the local field distribution of the LSPR on different Au nanostructures can be directly explored and discussed using the PEEM images.In addition,the dynamics of the LSPR is studied by combining interferometric time-resolved pump-probe technique and PEEM.Detailed information on the oscillation and dephasing of the LSPR field can be obtained.The results identify PEEM as a powerful tool for accessing the near-field mapping and dynamic properties of plasmonic nanostructures.
基金by JST CREST (No. JPMJCR1872)JSPS KAKENHI (Nos.JP20H02650 and JP18K18847)+2 种基金Im PACT Program of the Council for ScienceTechnology and Innovation (Cabinet Office, Government of Japan)Quantum Leap Flagship Program of MEXT (No. JPMXS0118067246)
文摘The recent development of stimulated Raman scattering(SRS) microscopy allows for highly sensitive biological imaging with molecular vibrational contrast, opening up a variety of applications including label-free imaging,metabolic imaging, and super-multiplex imaging. This paper introduces the principle of SRS microscopy and the methods of multicolor SRS imaging and describes an overview of biomedical applications.
基金supported by the National Institutes of Health(NS082518,CA193038,NS078791 and EB011556)the American Heart Association(14EIA18970041)Cancer Prevention Research Institute of Texas(RR160005)。
文摘Two-color multiphoton microscopy through wavelength mixing of synchronized lasers has been shown to increase the spectral window of excitable fluorophores without the need for wavelength tuning.However,most currently available dual output laser sources rely on the costly and complicated optical parametric generation approach.In this report,we detail a relatively simple and low cost diamond Raman laser pumped by a ytterbium fiber amplifier emitting at 1055 nm,which generates a first Stokes emission centered at 1240 nm with a pulse width of 100 fs.The two excitation wavelengths of 1055 and 1240 nm,along with the effective two-color excitation wavelength of 1140 nm,provide an almost complete coverage of fluorophores excitable within the range of 1000–1300 nm.When compared with 1055 nm excitation,two-color excitation at 1140 nm offers a 90%increase in signal for many far-red emitting fluorescent proteins(for example,tdKatushka2).We demonstrate multicolor imaging of tdKatushka2 and Hoechst 33342 via simultaneous two-color two-photon,and two-color three-photon microscopy in engineered 3D multicellular spheroids.We further discuss potential benefits and applications for two-color three-photon excitation.In addition,we show that this laser system is capable of in vivo imaging in mouse cortex to nearly 1 mm in depth with two-color excitation.