期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
CALCULATION OF 3-D TRANSIENT TEMPERATURE FIELD DURING LASER TRANSFORMATION HARDENING PROCESS 被引量:4
1
作者 L. W Zhang, R.S. Wang, J. Th.M.De Hosson, Y.L. Xia and F. G. Wang 1) The State Key Lab. for Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116023, China 2) Department of Applied Physics, University of Gro 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期806-810,共5页
A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the lat... A three-dimensional transient heat transfer model for laser transformation hardening process has been developed in this paper. The finite size of the laser treated sample, the surface heat loss of the sample, the latent heat of phase transformation and the temperature dependence of thermal properties of materials were considered. The heat source was considered as a moving Gaussian heat flux with a constant velocity. Three-dimension unequally spatial grid explicit finite difference equations, alternating direction implicit finite difference equations and implicit finite difference equations were deduced respectively. Three programs to calculate the temperature field were developed using Fortran language. The transient temperature fields of C22, 42CrMo, C60 steel samples during laser transformation hardening process were calculated using these programs, and the widths and depths of laser transformation hardening zones were also predicted. C22, 42CrMo, C60 steel samples were treated by CO_2 laser,the widths and depths of laser transformation hardening zones of these samples were also measured experimentally. The calculated widths and depths of laser transformation hardening zones are in good agreement with the experimental results. 展开更多
关键词 temperature field laser transformation hardening STEEL
下载PDF
Study on Laser Transformation Hardening of HT250 by High Speed Axis Flow CO_2 Laser 被引量:1
2
作者 Yunxia YE, Yonghong FU and Yongkang ZHANGMechanical Engineering College, Jiangsu University, Zhenjiang 212013, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期170-173,共4页
In this article, laser transformation hardening of HT250 material by high speed axis flow CO2 laser was investigated for first time in China. Appropriate laser hardening parameters, such as laser energy power P(W), la... In this article, laser transformation hardening of HT250 material by high speed axis flow CO2 laser was investigated for first time in China. Appropriate laser hardening parameters, such as laser energy power P(W), laser scanning rate V(m/min), were optimized through a number of experiments. The effect of the mentioned parameters on the hardened zone, including its case depth, microhardness distributions etc., were analyzed. Through the factual experiments, it is proved that axial flow CO2laser, which commonly outputs low mode laser beam, can also treat materials as long as the treating parameters used are rational. During the experiments, the surface qualities of some specimens treated by some parameters were found to be enhanced, which does not coincide with the former results. Furthermore in the article, the abnormal phenomenon observed in the experiments is discussed. According to the experimental results, the relationship between laser power density q and scanning rate V is shown in a curve and the corresponding formulation, which have been proved to be valuable for choosing the parameters of laser transformation hardening by axial flow CO2 lasers, was also given. 展开更多
关键词 laser transformation hardening Hardened case laser parameters Cast iron
下载PDF
Controlled Laser Transformation Hardening of Martensitic Stainless Steel by Pulsed Nd:YAG Laser 被引量:2
3
作者 B.Mahmoudi A.R.Sabour Aghdam M.J.Torkamany 《Journal of Electronic Science and Technology of China》 2010年第1期87-90,共4页
Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse en... Laser transformation hardening (LTH) was applied to the surface of the AISI 420 martensitic stainless steel by a pulsed Nd:YAG laser to obtain optimum hardness. The influences of process parameters (laser pulse energy, duration time, and travel speed) on the depth and hardness of laser treated area were investigated. Image analysis of SEM microstructure of AISI 420 showed that plate-like carbide have almost fully and (30-40)% of globular carbide particles dissolved into the matrix after laser transformation hardening by pulsed laser and the microstructure was refined to obtain controlled tempered martensite microstructure with 450 VHN hardness. 展开更多
关键词 laser transformation hardening martensitic stainless steel martensite microstructure pulsed Nd:YAG laser.
下载PDF
Effects of laser phase transformation hardening parameters on heat input and hardened-bead profile quality of unalloyed titanium 被引量:4
4
作者 D.S.BADKAR K.S.PANDEY G.BUVANASHEKARAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第6期1078-1091,共14页
Laser transformation hardening(LTH)of unalloyed titanium of 1.6 mm-thick sheet,nearer to ASTM Grade 3 of chemical composition was investigated using 2 kW CW Nd:YAG laser.The effects of laser power(750-1 250 W),scannin... Laser transformation hardening(LTH)of unalloyed titanium of 1.6 mm-thick sheet,nearer to ASTM Grade 3 of chemical composition was investigated using 2 kW CW Nd:YAG laser.The effects of laser power(750-1 250 W),scanning speed(1 000-3 000 mm/min)and focal point position(from-10 to-30 mm)on the heat input,and hardened-bead geometry(i.e.hardened bead width(HBW),hardened depth(HD)and angle of entry of hardened bead profile with the surface(AEHB))were investigated using response surface methodology(RSM).The experimental plan is based on Box-Behnken design matrix method.Linear and quadratic polynomial equations for predicting the heat input and the hardened bead geometry were developed.The results indicate that the proposed models predict the responses adequately within the limits of hardening parameters being used.It is suggested that regression equations can be used to find optimum hardening conditions for desired criteria. 展开更多
关键词 laser transformation hardening response surface methodology(RSM) unalloyed titanium TITANIUM hardened-bead profile
下载PDF
VIRTUAL PROCESSING OF LASER SURFACE HARDENING ON AUTOBODY DIES 被引量:2
5
作者 ZHANG Taohong YU Gang +1 位作者 WANG Jianlun LIU Xiangyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期268-271,共4页
A new method of collision-free path plan integrated in virtual processing is developed to improve the efficiency of laser surface hardening on dies. The path plan is based on the premise of no collision and the optimi... A new method of collision-free path plan integrated in virtual processing is developed to improve the efficiency of laser surface hardening on dies. The path plan is based on the premise of no collision and the optimization object is the shortest path. The optimization model of collision-free path is built from traveling salesman problem (TSP). Collision-free path between two machining points is calculated in configuration space (C-Space). Ant colony optimization (ACO) algorithm is applied to TSP of all the machining points to find the shortest path, which is simulated in virtual environment set up by IGRIP software. Virtual machining time, no-collision report, etc, are put out atter the simulation. An example on autobody die is processed in the virtual platform, the simulation results display that ACO has perfect optimization effect, and the method of virtual processing with integration of collision-free optimal path is practical. 展开更多
关键词 laser surface transformation hardening Virtual processing Traveling salesman problem(TSP) Ant colony optimization(ACO)
下载PDF
Hardness Profile Prediction for a 4340 Steel Spline Shaft Heat Treated by Laser Using a 3D Modeling and Experimental Validation 被引量:1
6
作者 Mahdi Hadhri Abderazzak El Ouafi Noureddine Barka 《Journal of Materials Science and Chemical Engineering》 2016年第4期9-19,共11页
Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heat... Laser surface transformation hardening becomes one of the most effective processes used to improve wear and fatigue resistance of mechanical parts. In this process, the material physicochemical properties and the heating system parameters have significant effects on the characteristics of the hardened surface. To appropriately exploit the benefits presented by the laser surface hardening, it is necessary to develop a comprehensive strategy to control the process variables in order to produce desired hardened surface attributes without being forced to use the traditional and fastidious trial and error procedures. The paper presents a study of hardness profile predictive modeling and experimental validation for spline shafts using a 3D model. The proposed approach is based on thermal and metallurgical simulations, experimental investigations and statistical analysis to build the prediction model. The simulation of the hardening process is carried out using 3D finite element model on commercial software. The model is used to estimate the temperature distribution and the hardness profile attributes for various hardening parameters, such as laser power, shaft rotation speed and scanning speed. The experimental calibration and validation of the model are performed on a 3 kW Nd:Yag laser system using a structured experimental design and confirmed statistical analysis tools. The results reveal that the model can provide not only a consistent and accurate prediction of temperature distribution and hardness profile characteristics under variable hardening parameters and conditions but also a comprehensive and quantitative analysis of process parameters effects. The modelling results show a great concordance between predicted and measured values for the dimensions of hardened zones. 展开更多
关键词 Heat Treatment laser Surface transformation hardening Finite Element Method Hardness Profile Prediction AISI 4340 Nd:Yag laser System ANOVA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部