A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
In this study, we demonstrate an all-fiber high-power linearly-polarized tunable Raman fiber laser system. An in- house high-power tunable fiber laser was employed as the pump source. A fiber loop mirror (FLM) servi...In this study, we demonstrate an all-fiber high-power linearly-polarized tunable Raman fiber laser system. An in- house high-power tunable fiber laser was employed as the pump source. A fiber loop mirror (FLM) serving as a high reflectivity mirror and a flat-cut endface serving as an output coupler were adopted to provide broadband feedback. A piece of 59-m commercial passive fiber was used as the Raman gain medium. The Raman laser had a 27.6 nm tuning range from 1112 nm to 1139.6 nm and a maximum output power of 125.3 W, which corresponds to a conversion efficiency of 79.4%. The polarization extinction ratio (PER) at all operational wavelengths was measured to be over 21 dB. To the best of our knowledge, this is the first report on a hundred-watt level linearly-polarized tunable Raman fiber laser.展开更多
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it i...We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.展开更多
Coherent anti-Stokes Raman scattering(CA RS)microscopy can resolve the chemical compo-nents and distribution of living biological systems in a label-firee manner and is favored in several disciplines.Current CA RS mic...Coherent anti-Stokes Raman scattering(CA RS)microscopy can resolve the chemical compo-nents and distribution of living biological systems in a label-firee manner and is favored in several disciplines.Current CA RS microscopes typically use bulky,high-performance solid-state lasers,which are expensive and sensitive to environmental changes.With their relatively low cost and environmental sensitivity,supercontinum fiber(SF)lasers with a small footprint have found increasing use in biomedical applications.Upon these features,in this paper,we homebuilt a low-cost CARS microscope based on a SF laser module(scCA RS microscope).This SF laser module is specially customized by adding a time synchronized seed source channel to the SF laser to form a dual-channel output laser.The performance of the scCARS microscope is evaluated with dimethyl sulfoxide,whose results confirm a spatial resolution of better than 500nm and a detection sensitivity of millimolar concentrations.The dual-color imaging capability is further demonstrated by imaging different species of mixed microspheres.We finally explore the potential of our scCARS microscope by mapping lipid droplets in different cancer cells and corneal stromal lenses.展开更多
In this paper we study the gain saturation induced mode-coupling control in solid state ring laser devices based on the stimulated Raman effect of the polar crystals in.order to realize solid state ring laser gyroscop...In this paper we study the gain saturation induced mode-coupling control in solid state ring laser devices based on the stimulated Raman effect of the polar crystals in.order to realize solid state ring laser gyroscopes. We theoretically investigate the mode coupling induced by gain saturation between clockwise (CW) and counterclockwise (CCW) propa- gating laser modes. Because the CW and CCW running waves are pumped with counter-propagating lasers respectively, the independent coexistence can be ensured.展开更多
In this paper, the microstructure change of one step-draw PET fiber has been studied byvarious methods, such as, Laser Raman Microscope, Wide-angle X-ray, Density-gradient andPolarizing Microscope. The computer has be...In this paper, the microstructure change of one step-draw PET fiber has been studied byvarious methods, such as, Laser Raman Microscope, Wide-angle X-ray, Density-gradient andPolarizing Microscope. The computer has been used to resolve overlapped bands in the Ramanspectra. Then the band changes have been correlated with trans, gauche and stressed trans-conformations indicated by a conformational index. Based on these indices, the relationshipbetween the conformation change of glycol units in the fiber structure and the macromechanicalproperties of fiber is expounded.展开更多
We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain mediu...We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.展开更多
Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO 4 laser pumping at wavelength of 1 342 nm, single mode output power of above 500 mW (op...Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO 4 laser pumping at wavelength of 1 342 nm, single mode output power of above 500 mW (optical-to-optical conversion efficiency of 50%) is simulated in the range of 1 400-1 500 nm.Using high-germanium,high-phosphate and high-borate silicate fibers as the gain medium,laser output at wavelengths of 1 420,1 450,1 480 and 1 495 nm can be achieved with different geometries,which are just as pumping C-band and L-band distributed Raman fiber amplifiers.展开更多
An efficient diode-end-pumped actively Q-switched Nd:YLF/SrW04 Raman laser is demonstrated. The fun- damental wave is 1047.0nm and the corresponding first-Stocks wave is 1158.7nm. With a pumping power of 10.5 W, the ...An efficient diode-end-pumped actively Q-switched Nd:YLF/SrW04 Raman laser is demonstrated. The fun- damental wave is 1047.0nm and the corresponding first-Stocks wave is 1158.7nm. With a pumping power of 10.5 W, the average output power of 2.2 W at 1158.7nm is obtained, with the corresponding optical conversion efficiency of 20.9%. At a repetition rate of 6 kHz, the pulse width of the Raman laser is 8. 7ns and the peak power is calculated to be 42.1 kW. The beam quality factors M2 in horizontal and vertical directions are 1.3 and 1.5, respectively.展开更多
A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved....A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.展开更多
We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a reg...We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on.展开更多
The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the ...The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the laser irradiation time for different amounts of CV on silver films were investigated. The laser burn out model was proposed to explain the dependence of the SERS intensity of CV on the laser irradiation time.展开更多
We present particle-in-cell(PIC)simulations of laser plasma instabilities(LPIs)with a laser pulse duration of a few picoseconds.The simulation parameters are appropriate to the planar-target LPI experimental condition...We present particle-in-cell(PIC)simulations of laser plasma instabilities(LPIs)with a laser pulse duration of a few picoseconds.The simulation parameters are appropriate to the planar-target LPI experimental conditions on SG-II.In this regime,the plasmas are characterized by a long electron density scale length and a large electron density range.It is found that when the incident laser intensity is well above its backward stimulated Raman scattering(backward SRS,BSRS)threshold,the backscattered light via the primary BSRS is intense enough to excite secondary SRS(Re-SRS)in the region below one-ninth of the critical density of the incident laser.The daughter light wave via the secondary BSRS(Re-BSRS)is amplified as it propagates toward the higher-density region in the bath of broadband light generated through the primary BSRS process.A higher intensity of the incident laser not only increases the amplitude of the BSRS light but also increases the convective amplification lengths of the Re-BSRS modes by broadening the spectrum of the BSRS light.Convective amplification of Re-BSRS causes pump depletion of the primary BSRS light and may lead to an underestimate of the primary BSRS level in SP-LPI experiments.Asignificant fraction of the generation of energetic electrons is strongly correlated with the Re-BSRS modes and should be considered as a significant energy loss.展开更多
A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity ...A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.展开更多
As mid-infrared (MIR) lasers show numerous applications in the field of defense, medical, materials processing, and optical communications. Investigation on MIR Raman fiber lasers (RFL) increasingly becomes a hot ...As mid-infrared (MIR) lasers show numerous applications in the field of defense, medical, materials processing, and optical communications. Investigation on MIR Raman fiber lasers (RFL) increasingly becomes a hot topic. Compared with traditional silica fiber, fluoride and chalcogenide glass fibers possess higher nonlinear coefficients and excellent MIR transmittances. In this article, the latest development of the MIR RFL using fluoride and chalcogenide glass fibers as gain media are introduced, respectively. This review article mainly focuses on the development of MIR RFLs in aspects of output wavelength, output power and optical efficiency. The prospect of MIR RFLs is also discussed.展开更多
A diode end-pumped acousto-optic Q-switched Nd:YVO_4/LuVO_4 Raman laser is demonstrated. Both YVO_4 and LuVO_4 can work as Raman gain, and slightly different active vibration modes of both crystals can result in diffe...A diode end-pumped acousto-optic Q-switched Nd:YVO_4/LuVO_4 Raman laser is demonstrated. Both YVO_4 and LuVO_4 can work as Raman gain, and slightly different active vibration modes of both crystals can result in different first-Stokes wavelengths. The output characteristic as the Raman competition between YVO_4 and LuVO_4 crystals for the laser systems with both shared cavity and coupled cavity is experimentally investigated.For the shared cavity, simultaneous Raman conversion in both YVO_4 and LuVO_4 crystals is achieved with dualwavelength emission at 1175.8 and 1177.1 nm. The maximum output power of 1.03 W and the conversion efficiency of 10.3% are obtained. The 0.84 W single first Stokes wavelength at 1177.1 nm with LuVO_4 Raman conversion is achieved with the coupled cavity. The results show that the coupled cavity with short Raman cavity can obtain a narrow pulse width. The separated laser crystal and Raman gain media with different vanadates in shared cavity have advantages in achieving dual-wavelength lasers with small frequency intervals.展开更多
An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,a...An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.展开更多
Laser Raman spectroscopic studies were carried out on hemoproteins with special reference to epilepsy and compared the data with those of controls. Some of the bands were found approximately at 368.45 cm-1, 424.90 cm-...Laser Raman spectroscopic studies were carried out on hemoproteins with special reference to epilepsy and compared the data with those of controls. Some of the bands were found approximately at 368.45 cm-1, 424.90 cm-1, 625.27 cm-1 and 807.38 cm-1 in case of normal children and at 1749.00 cm-1, 1795 cm-1 and 2000 cm-1 in epileptic children cases. A clear cut picture of the hemoproteins has already given in the literature and very interesting bands were found in the range from 300 cm-1 to 1800 cm-1. Our Raman lines are very effective and peculiar. We did not say anything about the detailing of these bands at this juncture.展开更多
Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition...Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition,Raman spectroscopy measurements were performed at different temperatures.The position of the Raman modes is found to increase while full width at half maximum(FWHM) of these modes is found to decrease with the decrease of temperature across spin state transition temperature(220 K) of PrCoO3.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金Project supported by the Fok Ying-Tong Education Foundation,China(Grant No.151062)
文摘In this study, we demonstrate an all-fiber high-power linearly-polarized tunable Raman fiber laser system. An in- house high-power tunable fiber laser was employed as the pump source. A fiber loop mirror (FLM) serving as a high reflectivity mirror and a flat-cut endface serving as an output coupler were adopted to provide broadband feedback. A piece of 59-m commercial passive fiber was used as the Raman gain medium. The Raman laser had a 27.6 nm tuning range from 1112 nm to 1139.6 nm and a maximum output power of 125.3 W, which corresponds to a conversion efficiency of 79.4%. The polarization extinction ratio (PER) at all operational wavelengths was measured to be over 21 dB. To the best of our knowledge, this is the first report on a hundred-watt level linearly-polarized tunable Raman fiber laser.
文摘We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
基金This work was supported in part by the National Key R&D Program of China(2018YFC0910600)the National Natural Science Foundation of China(81871397)+4 种基金the National Young Talent Program,the Shaanxi Science Fund for Distinguished Young Scholars(2020JC-27)the Key Research and Development Program of Shaanxi(2021ZDLSF04-05)the Shaanxi Young Top-notch Talent Program,the Best Funded Projects for the Scientific and Technological Activities for Excellent Overseas Researchers in Shaanxi Province(2017017)the Fundamental Research Funds for Central Universities(QTZX2105)Xueli Chen would like to thank Dr.Chi Zhang at Purdue University for his help in building the CARS microscope.
文摘Coherent anti-Stokes Raman scattering(CA RS)microscopy can resolve the chemical compo-nents and distribution of living biological systems in a label-firee manner and is favored in several disciplines.Current CA RS microscopes typically use bulky,high-performance solid-state lasers,which are expensive and sensitive to environmental changes.With their relatively low cost and environmental sensitivity,supercontinum fiber(SF)lasers with a small footprint have found increasing use in biomedical applications.Upon these features,in this paper,we homebuilt a low-cost CARS microscope based on a SF laser module(scCA RS microscope).This SF laser module is specially customized by adding a time synchronized seed source channel to the SF laser to form a dual-channel output laser.The performance of the scCARS microscope is evaluated with dimethyl sulfoxide,whose results confirm a spatial resolution of better than 500nm and a detection sensitivity of millimolar concentrations.The dual-color imaging capability is further demonstrated by imaging different species of mixed microspheres.We finally explore the potential of our scCARS microscope by mapping lipid droplets in different cancer cells and corneal stromal lenses.
文摘In this paper we study the gain saturation induced mode-coupling control in solid state ring laser devices based on the stimulated Raman effect of the polar crystals in.order to realize solid state ring laser gyroscopes. We theoretically investigate the mode coupling induced by gain saturation between clockwise (CW) and counterclockwise (CCW) propa- gating laser modes. Because the CW and CCW running waves are pumped with counter-propagating lasers respectively, the independent coexistence can be ensured.
文摘In this paper, the microstructure change of one step-draw PET fiber has been studied byvarious methods, such as, Laser Raman Microscope, Wide-angle X-ray, Density-gradient andPolarizing Microscope. The computer has been used to resolve overlapped bands in the Ramanspectra. Then the band changes have been correlated with trans, gauche and stressed trans-conformations indicated by a conformational index. Based on these indices, the relationshipbetween the conformation change of glycol units in the fiber structure and the macromechanicalproperties of fiber is expounded.
基金Project supported by the National Natural Science Foundation of China (Grant No 60478017), the Science and Technology Development Program of Shandong Province, China and the Scientific Research Starting Foundation for Returned 0verseas Chinese Scholars, Ministry of Education, China.
文摘We present a model of passively Q-switched Raman lasers by utilizing the rate equations. The intracavity fun-damental photon density, Raman photon density and the initial population-inversion density of the gain medium are assumed to be of Gaussian spatial distributions. These rate equations are normalized by introducing some synthetic parameters and solved numerically, and a group of general curves are generated. Prom these curves we can understand the dependence of the Raman laser pulse characteristics on the parameters about the pumping, the gain medium, the Raman medium and the resonator. An illustrative calculation for a passively Q-switched Nd^3+:GdVO4 self-Raman laser is presented to demonstrate the usage of the curves and related formulas.
文摘Different material-doped Raman fiber lasers with very high efficiency operating in continuous-wave are presented.With 1 W Nd∶YVO 4 laser pumping at wavelength of 1 342 nm, single mode output power of above 500 mW (optical-to-optical conversion efficiency of 50%) is simulated in the range of 1 400-1 500 nm.Using high-germanium,high-phosphate and high-borate silicate fibers as the gain medium,laser output at wavelengths of 1 420,1 450,1 480 and 1 495 nm can be achieved with different geometries,which are just as pumping C-band and L-band distributed Raman fiber amplifiers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204160,61378032 and 61211120196the Shandong Province Science and Technology Research Projects under Grant No 2010GGX10137
文摘An efficient diode-end-pumped actively Q-switched Nd:YLF/SrW04 Raman laser is demonstrated. The fun- damental wave is 1047.0nm and the corresponding first-Stocks wave is 1158.7nm. With a pumping power of 10.5 W, the average output power of 2.2 W at 1158.7nm is obtained, with the corresponding optical conversion efficiency of 20.9%. At a repetition rate of 6 kHz, the pulse width of the Raman laser is 8. 7ns and the peak power is calculated to be 42.1 kW. The beam quality factors M2 in horizontal and vertical directions are 1.3 and 1.5, respectively.
基金Supported by the Foundation of the State Key Laboratory of Crystal Material of Shandong University under Grant No KF1101the Foundation of Shandong University under Grant No 1170072613176+2 种基金the National Natural Science Foundation of China under Grant Nos 11004122 and 11204160the Special Grade of China Postdoctoral Science Foundation under Grant No 201104627the Independent Innovation Foundation of Shandong University under Grant No 2011GN058
文摘A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62175116 and 91950105)the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, Chinathe Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No. SJCX21_0276)
文摘We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on.
文摘The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the laser irradiation time for different amounts of CV on silver films were investigated. The laser burn out model was proposed to explain the dependence of the SERS intensity of CV on the laser irradiation time.
基金We thank the UCLA-IST OSIRIS Consortium for the use of OSIRIS.This research was supported by Science Challenge Project No.TZ2016005,by the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant Nos.XDA25050400 and XDB16000000the National Natural Science Foundation of China(NSFC)under Grant Nos.11772324 and 11621202the Fundamental Research Funds for the Central Universities.Some of the numerical calculations in this paper were done on the supercomputing system at the Supercomputing Center of the University of Science and Technology of China.
文摘We present particle-in-cell(PIC)simulations of laser plasma instabilities(LPIs)with a laser pulse duration of a few picoseconds.The simulation parameters are appropriate to the planar-target LPI experimental conditions on SG-II.In this regime,the plasmas are characterized by a long electron density scale length and a large electron density range.It is found that when the incident laser intensity is well above its backward stimulated Raman scattering(backward SRS,BSRS)threshold,the backscattered light via the primary BSRS is intense enough to excite secondary SRS(Re-SRS)in the region below one-ninth of the critical density of the incident laser.The daughter light wave via the secondary BSRS(Re-BSRS)is amplified as it propagates toward the higher-density region in the bath of broadband light generated through the primary BSRS process.A higher intensity of the incident laser not only increases the amplitude of the BSRS light but also increases the convective amplification lengths of the Re-BSRS modes by broadening the spectrum of the BSRS light.Convective amplification of Re-BSRS causes pump depletion of the primary BSRS light and may lead to an underestimate of the primary BSRS level in SP-LPI experiments.Asignificant fraction of the generation of energetic electrons is strongly correlated with the Re-BSRS modes and should be considered as a significant energy loss.
基金Poject supported by the National Natural Science Foundation of China(Grant Nos.62175116 and 62311530343)the Postgraduate Research Innovation Program of Jiangsu Province,China(Grant No.KYCX22_0913)。
文摘A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2015KYQD015
文摘As mid-infrared (MIR) lasers show numerous applications in the field of defense, medical, materials processing, and optical communications. Investigation on MIR Raman fiber lasers (RFL) increasingly becomes a hot topic. Compared with traditional silica fiber, fluoride and chalcogenide glass fibers possess higher nonlinear coefficients and excellent MIR transmittances. In this article, the latest development of the MIR RFL using fluoride and chalcogenide glass fibers as gain media are introduced, respectively. This review article mainly focuses on the development of MIR RFLs in aspects of output wavelength, output power and optical efficiency. The prospect of MIR RFLs is also discussed.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No LY19F050012the National Natural Science Foundation of China under Grant No 61505147+1 种基金the Laboratory Open Project of Wenzhou University under Grant No 18SK31the Research Funds of College Student Innovation of Zhejiang Province under Grant No 2018R42901
文摘A diode end-pumped acousto-optic Q-switched Nd:YVO_4/LuVO_4 Raman laser is demonstrated. Both YVO_4 and LuVO_4 can work as Raman gain, and slightly different active vibration modes of both crystals can result in different first-Stokes wavelengths. The output characteristic as the Raman competition between YVO_4 and LuVO_4 crystals for the laser systems with both shared cavity and coupled cavity is experimentally investigated.For the shared cavity, simultaneous Raman conversion in both YVO_4 and LuVO_4 crystals is achieved with dualwavelength emission at 1175.8 and 1177.1 nm. The maximum output power of 1.03 W and the conversion efficiency of 10.3% are obtained. The 0.84 W single first Stokes wavelength at 1177.1 nm with LuVO_4 Raman conversion is achieved with the coupled cavity. The results show that the coupled cavity with short Raman cavity can obtain a narrow pulse width. The separated laser crystal and Raman gain media with different vanadates in shared cavity have advantages in achieving dual-wavelength lasers with small frequency intervals.
文摘An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.
文摘Laser Raman spectroscopic studies were carried out on hemoproteins with special reference to epilepsy and compared the data with those of controls. Some of the bands were found approximately at 368.45 cm-1, 424.90 cm-1, 625.27 cm-1 and 807.38 cm-1 in case of normal children and at 1749.00 cm-1, 1795 cm-1 and 2000 cm-1 in epileptic children cases. A clear cut picture of the hemoproteins has already given in the literature and very interesting bands were found in the range from 300 cm-1 to 1800 cm-1. Our Raman lines are very effective and peculiar. We did not say anything about the detailing of these bands at this juncture.
基金Project supported by the Second Stage of Brain Korea 21 Project
文摘Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition,Raman spectroscopy measurements were performed at different temperatures.The position of the Raman modes is found to increase while full width at half maximum(FWHM) of these modes is found to decrease with the decrease of temperature across spin state transition temperature(220 K) of PrCoO3.