期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Beam oscillating parameters on pore inhibition,recrystallization and grain boundary characteristics of laser-arc hybrid welded AZ31 magnesium alloy
1
作者 Kangda Hao Yongkang Gao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjin Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2489-2502,共14页
Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were inv... Oscillating laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of beam oscillation parameters on pore inhibition,microstructure,grain boundary characteristics and tensile properties were investigated.The results showed that the pore formation can be inhibited with oscillating frequency higher than 75 Hz and radius smaller than 0.5 mm.The columnar grains neighboring the fusion line can be broken by the beam oscillation behavior,while the grain growth was promoted with the increase of frequency or radius.It should be noted that the coincidence site lattice(CSL)boundaries were mainlyΣ13b andΣ29 boundaries,which were contributed by{10■2}tensile twins and{11■2}compression twins,respectively.The total fraction of CSL boundaries reached maximum at radius of 0.25 mm and frequency of 75 Hz,which was also confirmed as the optimized parameters.In this case,the elongation rate increased up to 13.2%,12.8%higher than that of the weld without beam oscillation.Finally,the pore formation and inhibition mechanisms were illustrated according to the state of melt flow and keyhole formation,the abnormal growth was discussed basing on secondary recrystallization,and the relationship among the pore formation,grain size,boundary characteristics and weld toughness were finally established. 展开更多
关键词 Magnesium alloy laser-arc hybrid welding Beam oscillation RECRYSTALLIZATION Mechanical properties
下载PDF
Microstructure homogeneity and mechanical properties of laser-arc hybrid welded AZ31B magnesium alloy
2
作者 Yongkang Gao Kangda Hao +4 位作者 Lianyong Xu Yongdian Han Lei Zhao Wenjing Ren Hongyang Jing 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1986-1995,共10页
Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that lase... Laser-arc hybrid welding of AZ31B magnesium alloy was carried out,the effects of welding parameters on weld formation,microstructure homogeneity and mechanical properties were investigated.The results showed that laser-arc hybrid welding was beneficial to improve the weld formation of magnesium alloy by inhibiting the defect of undercut and pores.The weld microstructure was mainly columnar grains neighboring the fusion line and equiaxed grains at the weld center.It was interesting that the grain size at the upper arc zone was smaller than that at the lower laser zone,with the difference mainly affected by laser power rather than welding current and welding speed.The welding parameters were optimized as laser power of 3.5 kW,welding current of 100 A and welding speed of 1.5 m/min.In this case,the weld was free of undercut and pores,and the tensile strength and elongation rate reached 252 MPa and 11.2%,respectively.Finally,the microstructure homogeneity was illustrated according to the heat distribution,and the evolution law of tensile properties was discussed basing on the weld formation and microstructure characteristics. 展开更多
关键词 Magnesium alloy laser-arc hybrid welding Microstructure homogeneity Mechanical properties
下载PDF
Research on laser-arc hybrid welding technology for long-distance pipeline construction 被引量:18
3
作者 Zeng Huilin Xu Yuanbing +1 位作者 Wang Changjiang He Jinkun 《China Welding》 EI CAS 2018年第3期53-58,共6页
In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has f... In recent years, the research on pipeline laser-arc hybrid welding technology has been the important and difficult in the field of welding all over the world. China Petroleum Pipeline Research Institute Co. Ltd. has firstly developed pipeline laser-arc hybrid welding system in China, and executed the welding tests based on X70/X80 steel. Preliminary experiment results showed that hybrid welding could meet the requirements of related standards such as API1104,ASME,etc., the mechanical properties of girth seam are qualified in the case that there were no internal defects. With the development of high-power fiber laser and the continuous improvement of welding equipment, laser-arc hybrid welding technology for pipeline field welding will be available soon. 展开更多
关键词 PIPELINE all position welding laser-arc hybrid welding
下载PDF
Microstructure and properties of laser-arc hybrid welding of high-strength low-alloy steel
4
作者 XU Ke 《Baosteel Technical Research》 CAS 2021年第4期28-36,共9页
Laser-arc hybrid welding has the characteristics of optimal surface formation and greater penetration;it is extensively used in the welding of plates of medium thickness.However, for hybrid welding of lasers, the weld... Laser-arc hybrid welding has the characteristics of optimal surface formation and greater penetration;it is extensively used in the welding of plates of medium thickness.However, for hybrid welding of lasers, the welding seam cooling rate is rapid;thus, the welding seam has a higher tendency to significantly harden, which has a negative impact on the weld quality of the high-strength low-alloy(HSLA) steel plates of medium thickness.In this study, laser-arc hybrid welding is performed on the BG890 QL HSLA steel produced by Baoshan Iron & Steel Co.,Ltd.,and the quenching tendency of the welded structure is examined.The results demonstrate that the specific growth direction of the columnar crystal structure of the laser-arc hybrid welded joint is obvious.However, at the center and top of the welded seam, there are equiaxed crystals.The impact properties at room temperature and-40 ℃ of the weld area are 58.0 J and 40.0 J,respectively, and those of the heat-affected zone(HAZ) are 147.0 J and 66.5 J,respectively.The impact performance can meet these requirements.Laser-arc hybrid welding of HSLA steel can yield strong and durable welds and the HAZ structure to meet the requirements of engineering applications. 展开更多
关键词 high strength steel laser-arc hybrid welding MICROSTRUCTURE impact properties
下载PDF
Numerical simulation of temperature field in laser-arc hybrid welding of wear-resistant steel
5
作者 WANG Xiaojie QU Zhaoxia XIA Liqian 《Baosteel Technical Research》 CAS 2018年第2期42-47,共6页
Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear... Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization. 展开更多
关键词 high-strength wear-resistant steel laser-arc hybrid welding numerical simulation temperature modeling
下载PDF
高强钢激光-电弧复合焊接接头力学性能研究 被引量:6
6
作者 杨臻 张平 +1 位作者 蔡志海 秦航 《兵工学报》 EI CAS CSCD 北大核心 2017年第3期549-554,共6页
为弥补高强钢在传统焊接中低效、变形严重、焊缝强度低等问题,采用6 k W光纤激光器和熔化极活性气体保护电弧焊复合焊接6 mm厚度的30CrNiMo钢板,在相同焊接工艺下使用ER50-6和ER308两种焊丝,焊后对两种焊缝的组织形貌和力学性能进行研... 为弥补高强钢在传统焊接中低效、变形严重、焊缝强度低等问题,采用6 k W光纤激光器和熔化极活性气体保护电弧焊复合焊接6 mm厚度的30CrNiMo钢板,在相同焊接工艺下使用ER50-6和ER308两种焊丝,焊后对两种焊缝的组织形貌和力学性能进行研究。研究结果表明:ER50-6焊丝焊缝为细小的针状马氏体组织,而ER308焊丝焊缝为粗大的柱状晶奥氏体;两种焊丝焊缝的硬度面分布也出现较大区别,ER50-6焊丝焊缝沿熔合线出现低硬度分布,ER308焊丝焊缝则在焊缝中心下部出现低硬度集中,二者对应拉伸断裂位置分别在熔合线处和焊缝中心;通过能谱分析得知,ER308焊丝中高含量的Cr元素在焊缝上部集中,导致焊缝上部淬硬性增强,硬度大幅上升,韧性急剧下降,并最终导致焊缝力学性能的薄弱。因此,采用复合焊接搭配ER50-6焊丝,可实现对6 mm厚30CrNiMo钢板以1.0 m/min速度的高效无变形焊接,焊缝强度高达1 197 MPa. 展开更多
关键词 机械制造工艺与设备 光纤激光 高强钢 激光-电弧复合焊接 焊接接头 硬度面分布
下载PDF
Application and development in railway vehicles trend of new welding technologies manufacturing industry 被引量:5
7
作者 王春生 刘杰 +1 位作者 王洪潇 段珍珍 《China Welding》 EI CAS 2015年第4期9-14,共6页
This paper introduces the application of new automatic welding technologies in railway vehicles manufacturing industry, and presents the state of art of advanced friction stir welding technology, semi-penetration lase... This paper introduces the application of new automatic welding technologies in railway vehicles manufacturing industry, and presents the state of art of advanced friction stir welding technology, semi-penetration laser welding technology and laser-arc hybrid welding technology in manufacturing aluminum alloy body shell, stainless steel body shell and bogie. This paper also analyzes the application and development trend of three welding technologies in the future. 展开更多
关键词 railway vehicles friction stir welding semi-penetration laser welding laser-arc hybrid welding development trend
下载PDF
FEM Simulation of Distortion and Residual Stress Generated by High Energy Beam Welding with Considering Phase Transformation 被引量:1
8
作者 Y.-C. Kim M. Hirohata K. Inose 《Open Journal of Metal》 2014年第2期31-39,共9页
A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hy... A series of experiments was carried out so as to elucidate the effect of the phase transformation in the cooling process on welding distortion and residual stress generated by laser beam welding (LBW) and laser-arc hybrid welding (HYBW) on the high strength steel (HT780). Then, the experiments were simulated by 3D thermal elasticplastic analysis with FEM (Finite Element Method) which was performed with using the idealized mechanical properties considering the transformation superplasticity. From the results, the effects of the phase transformation on welding distortion and residual stress generated by LBW and HYBW were elucidated. Furthermore, the generality of the idealization of the mechanical properties was verified. 展开更多
关键词 WELDING DISTORTION Residual Stress LASER BEAM WELDING laser-arc Hybrid WELDING Phase Transformation FEM
下载PDF
Enhanced high-temperature mechanical properties of laser-arc hybrid additive manufacturing of Al-Zn-Mg-Cu alloy via microstructure control
9
作者 Dehua Liu Dongjiang Wu +5 位作者 Yunsong Wang Zhuo Chen Changrong Ge Qingyu Zhao Fangyong Niu Guangyi Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第2期220-234,共15页
Recently,rapid and cost-effective additive manufacturing solutions for lightweight aluminum alloys with excellent high-temperature mechanical properties have been increasingly in demand.In this study,we combined laser... Recently,rapid and cost-effective additive manufacturing solutions for lightweight aluminum alloys with excellent high-temperature mechanical properties have been increasingly in demand.In this study,we combined laser-arc hybrid additive manufacturing with solution and artificial aging treatments to achieve Al-Zn-Mg-Cu alloy with favorable high-temperature strength via microstructure control.Hydrogen pores became the major defect in the as-deposited and heat-treated specimens.The continuous distribution of eutectics with hard-brittle characteristics at the grain boundaries was destructed following heat treat-ment.High-densityηprecipitates were uniformly dispersed in the heat-treated Al-Zn-Mg-Cu alloy,whereas appeared coarsened and dissolved at 473 K,owing to the rapid diffusion of Zn and Mg.The average 0.2%yield strength(318±16 MPa)and ultimate tensile strength(362±20 MPa)at 473 K af-ter heat treatment were enhanced by approximately 58%and 51%,respectively,compared to those of the as-deposited specimen.In addition,theηprecipitates contributed to lattice distortions and strain fields,which prevented dislocation motion and increased slip deformation resistance at high temper-atures.The as-deposited specimen exhibited intergranular fracture at 473 K,with cracks preferring to propagate along the aggregated eutectics.However,crack propagation proceeded in the sections with more pores in the heat-treated specimen.Our approach may provide a valid option for achieving alu-minum alloys with excellent high-temperature mechanical properties. 展开更多
关键词 laser-arc hybrid additive manufacturing Al-Zn-Mg-Cu alloy High-temperature strength Heat treatment Microstructure evolution
原文传递
Effect of adhesive on laser-arc hybrid welding of aluminum alloy to high-strength steel joint 被引量:1
10
作者 Hong-yang Wang Yu-qing Ma Li-ming Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第9期1099-1107,共9页
Aluminum alloy 6061 and high-strength steel Q460 were joined by laser-arc-adhesive hybrid welding technology successfully.A Cu alloy interlayer was added between Al alloy and high-strength steel.The effect of the adhe... Aluminum alloy 6061 and high-strength steel Q460 were joined by laser-arc-adhesive hybrid welding technology successfully.A Cu alloy interlayer was added between Al alloy and high-strength steel.The effect of the adhesive on laser-arc-adhesive hybrid welding of Al alloy to high-strength steel was discussed.The optical microscope,scanning electron microscope and electron probe micro-analysis were applied to observe the microstructural evolution and phase transition at Al-Fe interface of laser-arc-adhesive hybrid welded joints.The results showed the maximum tensile shear strength of the joint without adhesive was 256 MPa.After adding adhesive,the maximum tensile shear strength reached 282 MPa.The combination of the mechanical bonding and the metallurgical effect could improve the mechanical performances.The shape of the joint in Al alloy changed into a canine-like morphology.There was no porosity in welds because the molten pool of Al alloy and the special keyhole phenomenon of laser welding provided a channel for the decomposed gas to escape from fusion zone. 展开更多
关键词 laser-arc welding Aluminum alloy High-strength steel Cu interlayer ADHESIVE
原文传递
Microstructure and mechanical properties of weld metal in laser and gas metal arc hybrid welding of 440-MPa-grade high-strength steel 被引量:4
11
作者 Fu-xing Yin Xu-chen Li +3 位作者 Cui-xin Chen Lin Zhao Yun Peng Zhi-ling Tian 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第7期853-861,共9页
Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of w... Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of weld metal was investigated.The weld-metal microstructure mainly consisted of pre-eutectoid ferrite,side-plate ferrite,acicular ferrite and lath bainite at a low welding speed.With the increase in welding speed,acicular ferrite and lath bainite were the dominant weld-metal microstructures.All samples failed at the base metal during tensile tests,which indicates that there is no soft zone in the hybrid welds.The welding speed had a significant effect on the impact toughness of the weld metal.The impact absorbed energy of the weld metal increased from 35 to 105 J with the increase in welding speed from 0.8 to 2.0 m/min.Large amounts of acicular ferrite and lath bainite were formed in the weld metal at a high welding speed,which resulted in an excellent impact toughness. 展开更多
关键词 laser-arc hybrid welding High-strength steel Microstructure Mechanical property
原文传递
Structure and reflective properties of Al-Cu-Fe quasicrystalline thin film prepared by laser induced arc method
12
作者 MOU Huiqing SHAO Tianmin SE Dao 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2004年第z1期133-140,共8页
Al-Cu-Fe thin films were prepared by laser induced arc (laser-arc) method from a single source-Al63Cu25Fe12 alloy, which was proved to consist of quasicrystalline phase together with approximant phase. The composition... Al-Cu-Fe thin films were prepared by laser induced arc (laser-arc) method from a single source-Al63Cu25Fe12 alloy, which was proved to consist of quasicrystalline phase together with approximant phase. The composition of the deposited films meets the requirement for formation of icosahedral symmetry phase. Quasicrystalline phase was obtained after annealing the amorphous as-deposit film samples. The optical properties of the samples were investigated. Thin film samples of Al, Cu and Fe deposited under the same condition were employed for comparison. The results showed specific reflective properties of Al-Cu-Fe quasicrystal thin film in some wavelength range. The optical conductivity of the films exhibited a negative peak, centered about 440 nm in range of 190to 800 nm. The Al-Cu-Fe quasicrystal thin films could absorb almost all the ray in the wavelength range from 420nm to 450 nm. The ratio of absorption was greater than 99%. 展开更多
关键词 quasicrystal thin film REFLECTION ratio laser-arc.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部