期刊文献+
共找到167,685篇文章
< 1 2 250 >
每页显示 20 50 100
Development of a one-axis manipulator for laser-assisted machining 被引量:1
1
作者 KIM Dong-hyeon LEE Choon-man 《Journal of Central South University》 SCIE EI CAS 2013年第2期378-384,共7页
Laser-assisted machining has been considered as a new alternative machining method of difficult-to-cut materials. A laser module with one-axis manipulator is developed to focus on preheating laser beam effectively. Fi... Laser-assisted machining has been considered as a new alternative machining method of difficult-to-cut materials. A laser module with one-axis manipulator is developed to focus on preheating laser beam effectively. First of all, the thermal characteristic analysis was performed to verify the importance of laser module location. Laser module should be moved within 1 mm. Analysis conditions of three positions in driving range of the one-axis manipulator are selected. And a C coupling is used as a connection device for spindle and laser module. An initial model has one C coupling, and the number of C coupling has been increased from 1 to 2 in an improved model. And the analysis is carried out again for the one-axis manipulator. The results of the static analysis, the maximum displacement and the maximum stress are decreased by 22% and 11%, respectively, for the improved model when the laser module is located at farthest away from the spindle unit. As a result of the modal analysis, the first natural frequency mode is increased by 13%, 18% and 12% at these positions of the improved model, respectively. The harmonic analysis of the improved model was performed by analyzing the results of the modal analysis. The maximum deformation was 0.33 mm in driving unit at 222 Hz. And the maximum compliance of the ISO axis direction was 0.23 mm/N. Finally, the one-axis manipulator has been fabricated successfully using the analysis result. 展开更多
关键词 主轴单元 激光模块 辅助加工 机械手 初始模型 模态分析 驱动单元 难切削材料
下载PDF
Clinical efficacy of femtosecond laser-assisted phacoemulsification in diabetic cataract patients
2
作者 Yi-Fei Tang Zhi-Hui Duan 《World Journal of Clinical Cases》 SCIE 2024年第10期1733-1741,共9页
BACKGROUND Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation,blood supply,metabolism,and the microenvironment.Traditional phacoemulsificati... BACKGROUND Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation,blood supply,metabolism,and the microenvironment.Traditional phacoemulsification may not fully tackle these issues,especially in instances with substantial preoperative astigmatism.The utilization of femtosecond laser-assisted phacoemulsification,in conjunction with Toric intraocular lens(IOL)implantation,offers a potentially more efficient strategy.This research seeks to evaluate the efficacy and possible complications of this approach in diabetic cataract patients.AIM To investigate the clinical efficacy and complications of femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation in diabetic cataract patients,comparing it with traditional phacoemulsification methods.METHODS This retrospective study enrolled 120 patients with diabetes cataract from May 2019 to May 2021.The patients were divided into two groups:the control group underwent traditional phacoemulsification and Toric IOL implantation,while the treatment group received Len Sx femtosecond laser-assisted treatment.Outcome measures included naked eye vision,astigmatism,high-level ocular phase difference detection,clinical efficacy,and complication.RESULTS There were no significant preoperative differences in astigmatism or naked eyesight between the two groups.However,postoperative improvements were observed in both groups,with the treatment group showing greater enhancements in naked eye vision and astigmatism six months after the procedure.High-level corneal phase difference tests also indicated significant differences in favor of the treatment group.CONCLUSION This study suggests that femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation appears to be more effective in enhancing postoperative vision in diabetic cataract patients compared to traditional methods offering valuable insights for clinical practice. 展开更多
关键词 Diabetic cataract Femtosecond laser-assisted phacoemulsification Toric intraocular lens implantation Naked vision
下载PDF
On dry machining of AZ31B magnesium alloy using textured cutting tool inserts
3
作者 Shailendra Pawanr Kapil Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1608-1618,共11页
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of... Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits. 展开更多
关键词 Magnesium alloy Dry machining Textured tools Flank wear SUSTAINABILITY
下载PDF
Stress-assisted corrosion mechanism of 3Ni steel by using gradient boosting decision tree machining learning method
4
作者 Xiaojia Yang Jinghuan Jia +5 位作者 Qing Li Renzheng Zhu Jike Yang Zhiyong Liu Xuequn Cheng Xiaogang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1311-1321,共11页
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st... Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection. 展开更多
关键词 weathering steel stress-assisted corrosion gradient boosting decision tree machining learning
下载PDF
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis
5
作者 Guolong Zhao Biao Zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
Thermal-Mechanical Efect and Removal Mechanism of Ti-6Al-4V During Laser-Assisted Grinding
6
作者 Guijian Xiao Shengwang Zhu +2 位作者 Yi He Gang Liu Yuanhe Ni 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期77-96,共20页
The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, ther... The low density and high corrosion resistance of titanium alloy make it a material with various applications in the aerospace industry. However, because of its high specifc strength and poor thermal conductivity, there are problems such as high cutting force, poor surface integrity, and high cutting temperature during conventional machining. As an advanced processing method with high efciency and low damage, laser-assisted machining can improve the machinability of titanium alloy. In this study, a picosecond pulse laser-assisted scratching (PPLAS) method considering both the temperature-dependent material properties and ultrashort pulse laser’s characteristics is frst proposed. Then, the efects of laser power, scratching depth, and scratching speed on the distribution of stress and temperature feld are investigated by simulation. Next, PPLAS experiments are conducted to verify the correctness of the simulation and reveal the removal behavior at various combinations of laser power and scratching depths. Finally, combined with simulated and experimental results, the removal mechanism under the two machining methods is illustrated. Compared with conventional scratching (CS), the tangential grinding force is reduced by more than 60% and the material removal degree is up to 0.948 during PPLAS, while the material removal is still primarily in the form of plastic removal. Grinding debris in CS takes the form of stacked fakes with a “fsh scale” surface, whereas it takes the form of broken serrations in PPLAS. This research can provide important guidance for titanium alloy grinding with high surface quality and low surface damage. 展开更多
关键词 laser-assisted machining Titanium alloy Material removal Thermal-mechanical efect Finite element analysis
下载PDF
Laser machining fundamentals:micro,nano,atomic and close-to-atomic scales 被引量:2
7
作者 Jinshi Wang Fengzhou Fang +4 位作者 Haojie An Shan Wu Huimin Qi Yuexuan Cai Guanyu Guo 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期125-151,共27页
With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher perf... With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM. 展开更多
关键词 laser machining mechanism atomic and close-to-atomic scale manufacturing ACSM manufacturing III
下载PDF
Laser-assisted Simulation of Dose Rate Effects of Wide Band Gap Semiconductor Devices
8
作者 TANG Ge XIAO Yao +3 位作者 SUN Peng LIU Jingrui ZHANG Fuwang LI Mo 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第12期2314-2325,共12页
Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety... Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices. 展开更多
关键词 laser-assisted simulation dose rate effect wide band gap semiconductor conversion factor
下载PDF
Effect of tool geometry on ultraprecision machining of soft-brittle materials:a comprehensive review
9
作者 Weihai Huang Jiwang Yan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期60-98,共39页
Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface int... Brittle materials are widely used for producing important components in the industry of optics,optoelectronics,and semiconductors.Ultraprecision machining of brittle materials with high surface quality and surface integrity helps improve the functional performance and lifespan of the components.According to their hardness,brittle materials can be roughly divided into hard-brittle and soft-brittle.Although there have been some literature reviews for ultraprecision machining of hard-brittle materials,up to date,very few review papers are available that focus on the processing of soft-brittle materials.Due to the‘soft’and‘brittle’properties,this group of materials has unique machining characteristics.This paper presents a comprehensive overview of recent advances in ultraprecision machining of soft-brittle materials.Critical aspects of machining mechanisms,such as chip formation,surface topography,and subsurface damage for different machining methods,including diamond turning,micro end milling,ultraprecision grinding,and micro/nano burnishing,are compared in terms of tool-workpiece interaction.The effects of tool geometries on the machining characteristics of soft-brittle materials are systematically analyzed,and dominating factors are sorted out.Problems and challenges in the engineering applications are identified,and solutions/guidelines for future R&D are provided. 展开更多
关键词 ultraprecision machining soft-brittle materials ductile machining tool geometries material removal mechanisms surface integrity
下载PDF
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:2
10
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors machine learning PREVENTION Strategies
下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
11
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength machine learning
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:2
12
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
Comparison of visual performance with iTrace analyzer following femtosecond laser-assisted cataract surgery with bilateral implantation of two different trifocal intraocular lenses
13
作者 Rui-Hong Ju Hao-Kun Qu +4 位作者 Zhe-Ming Wu Yun Chen Li-Nan Wu Yuan Long Zheng Wang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第11期1773-1781,共9页
AIM:To compare the postoperative binocular visual performance with an iTrace analyzer following femtosecond laser-assisted cataract surgery(FLACS)combined with bilateral implantation of two different types of diffract... AIM:To compare the postoperative binocular visual performance with an iTrace analyzer following femtosecond laser-assisted cataract surgery(FLACS)combined with bilateral implantation of two different types of diffractive trifocal intraocular lenses(IOL).METHODS:During this retrospective observational study,patients who received bilateral FLACS combined with implantation of two different types of diffractive trifocal IOLs were evaluated.According to the IOLs’different types and design,the patients were divided into AT LISA tri839MP group(tri839 group)and AcrySof PanOptix TFNT00 group(TFNT group).Study parameters included preoperative and postoperative uncorrected distance visual acuity(UDVA)at 5 m,uncorrected near visual acuity(UNVA)at 30 cm and 40 cm,uncorrected intermediate visual acuity(UIVA)at 60 cm and 80 cm,postoperative refractive status,objective visual qualities and total high order aberrations(HOAs)postoperatively.The postoperative complications were also recorded.RESULTS:Totally 56 eyes of 28 patients(tri839 group,n=26;TFNT group,n=30)were included.Preoperative baseline characteristics between groups were not statistically significantly different.UDVA was not significantly different between groups except for 1wk follow-up due to the postoperative corneal edema.TFNT group showed statistically significant better UNIA at 60 cm than tri839 group at the 1wk(0.05±0.19 vs 0.15±0.10 logMAR,P=0.013),1mo(0.05±0.12 vs 0.15±0.09 logMAR,P=0.001)and 3mo(0.04±0.12 vs 0.15±0.11 logMAR,P=0.001)follow-up,while tri839 group showed statistically significant better UNIA at 80 cm than TFNT group at the 1d(0.14±0.15 vs 0.20±0.14 logMAR,P=0.041)and 1mo(0.09±0.07 vs 0.14±0.10 logMAR,P=0.042)follow-up.Postoperative refractive status showed stable at every visit.Modulated transfer function(MTF)values and strehl ratio(SR)values were improved and HOAs were lower significantly after surgery.CONCLUSION:FLACS with bilateral implantations of both tri839 and TFNT00 can achieve satisfactory natural whole-course vision,high postoperative refractive stability and good visual quality but without significantly difference.iTrace aberration instrument can accurately evaluate the visual quality under different status. 展开更多
关键词 femtosecond laser-assisted cataract surgery visual performance BINOCULAR AT LISA tri839MP AcrySof PanOptix TFNT00 iTrace
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:1
14
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:1
15
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
Prediction of Wearing of Cutting Tools Using Real Time Machining Parameters and Temperature Using Rayleigh-Ham Method
16
作者 Jean Nyatte Nyatte Fabrice Alban Epee +3 位作者 Wilba Christophe Kikmo Samuel Batambock Claude Valéry Ngayihi Abbe Robert Nzengwa 《Modern Mechanical Engineering》 2023年第2期35-54,共20页
Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determin... Wear of cutting tools is a big concern for industrial manufacturers, because of their acquisition cost as well as the impact on the production lines when they are unavailable. Law of wear is very important in determining cutting tools lifespan, but most of the existing models don’t take into account the cutting temperature. In this work, the theoretical and experimental results of a dynamic study of metal machining against cutting temperature of a treated steel of grade S235JR with a high-speed steel tool are provided. This study is based on the analysis of two complementary approaches, an experimental approach with the measurement of the temperature and on the other hand, an approach using modeling. Based on unifactorial and multifactorial tests (speed of cut, feed, and depth of cut), this study allowed the highlighting of the influence of the cutting temperature on the machining time. To achieve this objective, two specific approaches have been selected. The first was to measure the temperature of the cutting tool and the second was to determine the wear law using Rayleigh-Ham dimensional analysis method. This study permitted the determination of a law that integrates the cutting temperature in the calculations of the lifespan of the tools during machining. 展开更多
关键词 machining Cutting Temperature Modeling WEAR Cutting Tool
下载PDF
ArcCHECK Machine QA工具在医用直线加速器质量保证中的应用效果
17
作者 张上超 曾华驱 王思阳 《医疗装备》 2024年第7期19-24,共6页
目的探讨ArcCHECK Machine QA工具在医用直线加速器质量保证中的应用效果。方法利用ArcCHECK Machine QA工具和ArcCHECK体模对医用直线加速器进行性能测试,项目包括机架角度、机架旋转速度、机架旋转中心、多叶准直器和铅门位置的一致... 目的探讨ArcCHECK Machine QA工具在医用直线加速器质量保证中的应用效果。方法利用ArcCHECK Machine QA工具和ArcCHECK体模对医用直线加速器进行性能测试,项目包括机架角度、机架旋转速度、机架旋转中心、多叶准直器和铅门位置的一致性、机架旋转出束时的平坦度和对称性,评估该工具在医用直线加速器质量保证中的应用效果。结果旋转模式下机架平均旋转速度为3.6 deg/s,最大偏差约0.5 deg/s;机架旋转等中心形成的平均半径为0.4 mm,多叶准直器与铅门的最大距离正、负差异平均值分别为0.7 mm、-0.7 mm;旋转出束模式下Y方向的平坦度为1.8%,Y方向的对称性为1.1%,X方向的对称性为4.3%。结论ArcCHECK Machine QA工具可用于医用直线加速器常规及容积调强出束性能质量保证。 展开更多
关键词 ArcCHECK machine QA工具 质量保证 容积调强 等中心
下载PDF
Failure mode change and material damage with varied machining speeds:a review
18
作者 Jianqiu Zhang Binbin He Bi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期36-60,共25页
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ... High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM. 展开更多
关键词 high-speed machining adiabatic shear band subsurface damage dynamic recrystallization
下载PDF
A New Dynamics Analysis Model for Five-Axis Machining of Curved Surface Based on Dimension Reduction and Mapping
19
作者 Minglong Guo Zhaocheng Wei +2 位作者 Minjie Wang Zhiwei Zhao Shengxian Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期172-184,共13页
The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics an... The equipment used in various fields contains an increasing number of parts with curved surfaces of increasing size.Five-axis computer numerical control(CNC)milling is the main parts machining method,while dynamics analysis has always been a research hotspot.The cutting conditions determined by the cutter axis,tool path,and workpiece geometry are complex and changeable,which has made dynamics research a major challenge.For this reason,this paper introduces the innovative idea of applying dimension reduction and mapping to the five-axis machining of curved surfaces,and proposes an efficient dynamics analysis model.To simplify the research object,the cutter position points along the tool path were discretized into inclined plane five-axis machining.The cutter dip angle and feed deflection angle were used to define the spatial position relationship in five-axis machining.These were then taken as the new base variables to construct an abstract two-dimensional space and establish the mapping relationship between the cutter position point and space point sets to further simplify the dimensions of the research object.Based on the in-cut cutting edge solved by the space limitation method,the dynamics of the inclined plane five-axis machining unit were studied,and the results were uniformly stored in the abstract space to produce a database.Finally,the prediction of the milling force and vibration state along the tool path became a data extraction process that significantly improved efficiency.Two experiments were also conducted which proved the accuracy and efficiency of the proposed dynamics analysis model.This study has great potential for the online synchronization of intelligent machining of large surfaces. 展开更多
关键词 Curved surface Five-axis machining Dimension reduction and mapping Milling force DYNAMICS
下载PDF
Assessment of Lubrication Property and Machining Performance of Nanofluid Composite Electrostatic Spraying(NCES)Using Different Types of Vegetable Oils as Base Fluids of External Fluid
20
作者 Yu Su Zepeng Chu +2 位作者 Le Gong Bin Wang Zhiqiang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期97-110,共14页
The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic sprayin... The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid. 展开更多
关键词 Nanofluid composite electrostatic spraying Lubrication property machining performance Vegetable oil External fluid
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部