Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of ...Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946- nm laser is also calculated.展开更多
(Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3.9H2O, ammonia water and citric acid as starting materials. The powders were characterized...(Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3.9H2O, ammonia water and citric acid as starting materials. The powders were characterized by TG-DTA, XRD, FT-IR, ICP and TEM, respectively. The grain sizes were calculated by the Scherrer's formula using the full width at half maximum (FWHM) of YAG (420) crystal plane diffraction lines. The study focused on crystallization of ceramics at different heat treatment temperatures. The experimental results show that crystallizing temperature of YAG is 850 ℃, and the intermediate crystal phase YAP, appearing during heat treatment, transforms to YAG cubic crystal phase at the temperature of 1 050℃. The particle size of the powders synthesized by LCS is nano-sized. With the temperature increasing, the mean grain sizes raise, the stand deviations keep almost at the value of 2.0 and the lattice parameters decrease. The grains mainly grow by grain boundary diffusion. The lattice parameter expansion is caused by an increase of the repulsive dipolar interactions on surfaces of crystallites,展开更多
We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at...We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.展开更多
We present a high-power Ho:YAG ceramic laser pumped at 1908nm. Using a dual-end-pumped structure, the maximum continuous-wave output power of 48 W is obtained, corresponding to a slope efficiency of 70.4% with respec...We present a high-power Ho:YAG ceramic laser pumped at 1908nm. Using a dual-end-pumped structure, the maximum continuous-wave output power of 48 W is obtained, corresponding to a slope efficiency of 70.4% with respect to the absorbed pump power. At actively Q-switched mode, the maximum average output power of 46 W and the minimum pulse width of 21 ns are achieved at a pulse repetition frequency of 20 kHz, corresponding to a peak power of approximately 109.5kW. In addition, the beam-quality M2 factor is found to be 1.4 at the maximum output power.展开更多
Changes of surface morphology following XeCI excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and AI2O3-SiC nanocomposite samples ex...Changes of surface morphology following XeCI excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and AI2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastabfe γ-Al2Oa was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); AI203, 40% (max.); Si3N4, 12% (max.).展开更多
Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy densi...Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy density was varied from 0.21 to 0.81 J / cm2 to optimize bending strength. For ZrO2 ceramic, it was found that the strength increases from 530 to 753 MPa at 0.51 J / cm2 irradiation. For Al2O3 and (Ce-TZP)+ Al2O3 the fracture strength also increases in varying degree. The causes of strength increment were discussed.展开更多
A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved....A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.展开更多
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ...The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.展开更多
Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining p...Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.展开更多
We experimentally demonstrate the generation of sub-100-fs pulses from a diode-pumped passively mode-locked Yb:Y3ScAl4O12 (Yb:YSAG) ceramic laser. Stable mode-locked pulses as short as 96 fs at the central wavelen...We experimentally demonstrate the generation of sub-100-fs pulses from a diode-pumped passively mode-locked Yb:Y3ScAl4O12 (Yb:YSAG) ceramic laser. Stable mode-locked pulses as short as 96 fs at the central wavelength of 1052 nm with a repetition rate of -102 MHz are obtained. The laser has a maximum average output power of 51 mW. To the best of our knowledge, these are so far the shortest pulses and the first demonstration of sub-100- fs pulses obtained from the mode-locked Yb:YSAG ceramic lasers.展开更多
High-quality neodymium-doped yttrium aluminum garnet(Nd:YAG)transparent ceramic(4.0 mole percent)was fabricated by a solid-state reaction method and vacuum sintering.The microstructure,optical transmittance,spectral p...High-quality neodymium-doped yttrium aluminum garnet(Nd:YAG)transparent ceramic(4.0 mole percent)was fabricated by a solid-state reaction method and vacuum sintering.The microstructure,optical transmittance,spectral properties and laser performance were investigated.The average grain size of the sample is about 10 mm.The transmittance of a 2.8-mm thick sample reaches 79.5%at the laser wavelength of 1064 nm.The highest absorption peak is centered at 807 nm and the absorption coefficient is 13.9 cm^(-1).The absorption coefficient at the laser wavelength is 0.2 cm^(-1).The main emission peak is at 1064 nm and the fluorescence lifetime is 102 ms.A laser diode(808 nm)whose maximum output is about 1000 mW was used as a pump source and an endpumped laser experiment was performed.The 1064 nm-CW-laser output was obtained and the threshold is 733 mW.With 998 mW of maximum absorbed pump power,a laser output of 17 mW is obtained with a slope efficiency of 6.1%.展开更多
The ablation of sintered silicon carbide ceramics by an ArF excimer laser was studied. Three zones are generated: the ablation zone that presented molten morphology and was composed by the Si and C phase; the condens...The ablation of sintered silicon carbide ceramics by an ArF excimer laser was studied. Three zones are generated: the ablation zone that presented molten morphology and was composed by the Si and C phase; the condensation zone formed by vaporized SiC; and the oxidation zone that showed the characteristics of thermal oxidation. The ablation depth and oxidation range increase linearly with fluence and pulses within 0.5-4 J/cm2, but the normalized ablation efficiency is constant (3.60± 0.60 μm · mm2/J). The theoretical photochemical ablation depth supplies 25% of the total depth at 1 J/cm2 but decreases to 16% at 4 J/cm2. The ablation is dominated by the photothermal effect and conforms to the thermal evaporation mechanism.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61405171)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2012FQ014)the Science and Technology Program of the Shandong Higher Education Institutions of China(Grant No.J13LJ05)
文摘Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946- nm laser is also calculated.
基金the Chinese Education Ministry Excellent Teacher Foundation(KB20026)
文摘(Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3.9H2O, ammonia water and citric acid as starting materials. The powders were characterized by TG-DTA, XRD, FT-IR, ICP and TEM, respectively. The grain sizes were calculated by the Scherrer's formula using the full width at half maximum (FWHM) of YAG (420) crystal plane diffraction lines. The study focused on crystallization of ceramics at different heat treatment temperatures. The experimental results show that crystallizing temperature of YAG is 850 ℃, and the intermediate crystal phase YAP, appearing during heat treatment, transforms to YAG cubic crystal phase at the temperature of 1 050℃. The particle size of the powders synthesized by LCS is nano-sized. With the temperature increasing, the mean grain sizes raise, the stand deviations keep almost at the value of 2.0 and the lattice parameters decrease. The grains mainly grow by grain boundary diffusion. The lattice parameter expansion is caused by an increase of the repulsive dipolar interactions on surfaces of crystallites,
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the China Postdoctoral Science Foundation Funded Project under Grant No 2015T80339+1 种基金the Fundamental Research Funds for the Central Universities under Grant No HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We present a high-power Ho:YAG ceramic laser pumped at 1908nm. Using a dual-end-pumped structure, the maximum continuous-wave output power of 48 W is obtained, corresponding to a slope efficiency of 70.4% with respect to the absorbed pump power. At actively Q-switched mode, the maximum average output power of 46 W and the minimum pulse width of 21 ns are achieved at a pulse repetition frequency of 20 kHz, corresponding to a peak power of approximately 109.5kW. In addition, the beam-quality M2 factor is found to be 1.4 at the maximum output power.
文摘Changes of surface morphology following XeCI excimer laser irradiation were investigated for three engineering ceramic materials (Al2O3, Al2O3-SiC nanocomposite and Si3N4). Al2O3 and AI2O3-SiC nanocomposite samples exhibit a smooth rapid melt layer on the surface, and the formation of the metastabfe γ-Al2Oa was observed. A silicon-rich layer on the surface was formed after laser irradiation of Si3N4. The toughness K1c of the materials was measured by the indentation fracture method. After laser irradiation, the toughness of Al2O3, Al2O3-SiC nanocomposite and Si3N4 was improved to various degrees: Al2O3-SiC nanocomposite, 60% (max.); AI203, 40% (max.); Si3N4, 12% (max.).
文摘Thin metallic layers (~ 2 μm) of Ni were deposited on polycrystalline Al2O3. ZrO2 and (Ce-TZP)+Al2O3 ceramic substrates. and further irradiated with pulsed excimer (Xeno chloride) laser pulses. The laser energy density was varied from 0.21 to 0.81 J / cm2 to optimize bending strength. For ZrO2 ceramic, it was found that the strength increases from 530 to 753 MPa at 0.51 J / cm2 irradiation. For Al2O3 and (Ce-TZP)+ Al2O3 the fracture strength also increases in varying degree. The causes of strength increment were discussed.
基金Supported by the Foundation of the State Key Laboratory of Crystal Material of Shandong University under Grant No KF1101the Foundation of Shandong University under Grant No 1170072613176+2 种基金the National Natural Science Foundation of China under Grant Nos 11004122 and 11204160the Special Grade of China Postdoctoral Science Foundation under Grant No 201104627the Independent Innovation Foundation of Shandong University under Grant No 2011GN058
文摘A diode-pumped actively Q-switched Raman laser is demonstrated, with YV04 employed as Raman active medium, based on a ceramic Nd:YAG laser operating at 1444nm. The first-stokes Raman generation at 1657nm is achieved. A maximum output power of as high as 612mW is obtained under a pump power of 20. 7 W and at a pulse repetition frequency rate of 20kHz, corresponding to an optical-to-optical conversion efficiency of 3%.
文摘The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal.
基金Supported by National Natural Science Foundation of China(Grant No.51205097)China Postdoctoral Science Foundation(Grant No.2013M541401)
文摘Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.
基金partially supported by the National Natural Science Foundation of China(No.61575089)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe fund of the Ministry of Education(MOE),Singapore(Grant No.2016-T1-001-026)
文摘We experimentally demonstrate the generation of sub-100-fs pulses from a diode-pumped passively mode-locked Yb:Y3ScAl4O12 (Yb:YSAG) ceramic laser. Stable mode-locked pulses as short as 96 fs at the central wavelength of 1052 nm with a repetition rate of -102 MHz are obtained. The laser has a maximum average output power of 51 mW. To the best of our knowledge, these are so far the shortest pulses and the first demonstration of sub-100- fs pulses obtained from the mode-locked Yb:YSAG ceramic lasers.
基金supported by the Key Basic Research Project of Science and Technology of Shanghai(Grant No.07DJ14001)the Applied Basic Research Programs of Science and Technology Commission Foundation of Shanghai(Grant Nos.05DZ22005 and 06DZ11417)the Innovation Project of Shanghai Institute of Ceramics,Chinese Academy of Sciences and the Fund of National Engineering Research Center for Optoelectronic Crystalline Materials(Grant No.2005DC105003).
文摘High-quality neodymium-doped yttrium aluminum garnet(Nd:YAG)transparent ceramic(4.0 mole percent)was fabricated by a solid-state reaction method and vacuum sintering.The microstructure,optical transmittance,spectral properties and laser performance were investigated.The average grain size of the sample is about 10 mm.The transmittance of a 2.8-mm thick sample reaches 79.5%at the laser wavelength of 1064 nm.The highest absorption peak is centered at 807 nm and the absorption coefficient is 13.9 cm^(-1).The absorption coefficient at the laser wavelength is 0.2 cm^(-1).The main emission peak is at 1064 nm and the fluorescence lifetime is 102 ms.A laser diode(808 nm)whose maximum output is about 1000 mW was used as a pump source and an endpumped laser experiment was performed.The 1064 nm-CW-laser output was obtained and the threshold is 733 mW.With 998 mW of maximum absorbed pump power,a laser output of 17 mW is obtained with a slope efficiency of 6.1%.
基金supported by the National Natural Science Foundation of China(No.61705235)the Innovation Project of the Academy of Opto-Electronics,Chinese Academy of Sciences(No.Y70B03A12Y)
文摘The ablation of sintered silicon carbide ceramics by an ArF excimer laser was studied. Three zones are generated: the ablation zone that presented molten morphology and was composed by the Si and C phase; the condensation zone formed by vaporized SiC; and the oxidation zone that showed the characteristics of thermal oxidation. The ablation depth and oxidation range increase linearly with fluence and pulses within 0.5-4 J/cm2, but the normalized ablation efficiency is constant (3.60± 0.60 μm · mm2/J). The theoretical photochemical ablation depth supplies 25% of the total depth at 1 J/cm2 but decreases to 16% at 4 J/cm2. The ablation is dominated by the photothermal effect and conforms to the thermal evaporation mechanism.