We describe a new titanosaurian sauropod dinosaur, Borealosaurus wimani gen. et sp. nov., based on a distinctive mid-distal caudal vertebra from the early Late Cretaceous Sunjiawan Formation exposed in the Shuangmiao ...We describe a new titanosaurian sauropod dinosaur, Borealosaurus wimani gen. et sp. nov., based on a distinctive mid-distal caudal vertebra from the early Late Cretaceous Sunjiawan Formation exposed in the Shuangmiao village of Beipiao in Liaoning, China. We provisionally refer an isolated tooth crown, a middle caudal vertebra, and a right humerus from the same locality and horizon to this taxon. Borealosaurus is distinguished from other sauropods in its possession of opisthocoelous mid-distal caudal vertebrae. The occurrence of opisthocoelous caudals in Borealosaurus and the Mongolian sauropod Opisthocoelicaudia raises the possibility that these taxa pertain to an as-yet unrecognized titanosaurian subclade endemic to the Cretaceous Asia.展开更多
A new titanosauriform sauropod Dongyangosaurus sinensis gen. et sp. nov. from the early Late Cretaceous of Dongyang County, Zhejiang Province, is erected based on a partial postcranial skeleton. It is characterized by...A new titanosauriform sauropod Dongyangosaurus sinensis gen. et sp. nov. from the early Late Cretaceous of Dongyang County, Zhejiang Province, is erected based on a partial postcranial skeleton. It is characterized by complex laminae on the lateral surface of the neural spines and postzygapophyses of dorsal vertebrae, a distinct fossa on the ventral surfaces of the prezygapophyses of dorsal vertebrae, distinct fossae are also present on the lateral surface of the postzygapophysis of anterior caudal vertebrae; pubis is shorter than ischium, the small obturator foramen of pubis elongated, and nearly closed. The lamina complexity of dorsal vertebrae in Dongyangosaurus indicates that a higher diversity of titanosauriformes occurred during the early Late Cretaceous in China.展开更多
The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcr...The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcrops that are considered to be related to the newly discovered Riqingwei Basin.This basin has been the focus of extensive study due to its continuous Cretaceous rock sequence,geological location and petroleum resource potential.However,the lack of a consolidated chronology for the strata has precluded a better understanding of stratigraphy,tectonic evolution and resource potential of the Riqingwei Basin.Here,we present the results of a new magnetostratigraphic study of the continental scientific drilling borehole LK-1,which is located on Lingshan Island,offshore Shandong province,eastern China.The goals of this study are to(1)refine the Late Jurassic to Early Cretaceous chronostratigraphic framework of the Riqingwei Basin,and(2)investigate the location of the J/K boundary in the Borehole Core LK-1.The observed patterns of the paleomagnetic polarity zone in the LK-1 borehole correlate well with the geomagnetic polarity time scale(GPTS),and the continuous magnetostratigraphy profile defined in this core indicates an age ranging from 146.5 to 125.8 Ma for the samples interval.The sediment accumulation rates(SAR)of LK-1 show one period of high SAR(~10.5 cm kyr^(-1))at 135.3–130.6 Ma and two periods of low SAR(~4.8 and~2.2 cm kyr^(-1))at145.7–135.3 and 130.6–125.8 Ma,respectively.In addition,the magnetostratigraphic results suggest that the Jurassic-Cretaceous(J/K)boundary of the LK-1 is located within the magnetozone N21.2 n(~1254 m).This comprehensive geochronologic framework provides a good correlation of the marine Upper Jurassic to Lower Cretaceous strata in the Riqingwei Basin to other marine strata and continental sequences,in addition to providing a foundation for the study of the structural evolution of eastern China.展开更多
文摘We describe a new titanosaurian sauropod dinosaur, Borealosaurus wimani gen. et sp. nov., based on a distinctive mid-distal caudal vertebra from the early Late Cretaceous Sunjiawan Formation exposed in the Shuangmiao village of Beipiao in Liaoning, China. We provisionally refer an isolated tooth crown, a middle caudal vertebra, and a right humerus from the same locality and horizon to this taxon. Borealosaurus is distinguished from other sauropods in its possession of opisthocoelous mid-distal caudal vertebrae. The occurrence of opisthocoelous caudals in Borealosaurus and the Mongolian sauropod Opisthocoelicaudia raises the possibility that these taxa pertain to an as-yet unrecognized titanosaurian subclade endemic to the Cretaceous Asia.
文摘A new titanosauriform sauropod Dongyangosaurus sinensis gen. et sp. nov. from the early Late Cretaceous of Dongyang County, Zhejiang Province, is erected based on a partial postcranial skeleton. It is characterized by complex laminae on the lateral surface of the neural spines and postzygapophyses of dorsal vertebrae, a distinct fossa on the ventral surfaces of the prezygapophyses of dorsal vertebrae, distinct fossae are also present on the lateral surface of the postzygapophysis of anterior caudal vertebrae; pubis is shorter than ischium, the small obturator foramen of pubis elongated, and nearly closed. The lamina complexity of dorsal vertebrae in Dongyangosaurus indicates that a higher diversity of titanosauriformes occurred during the early Late Cretaceous in China.
基金supported by the National Natural Science Foundation of China(Grant Nos.42002030,42072169)National Science and Technology Major Project(Grant No.2016ZX05024-002-001)+1 种基金the Key R&D Plan of Shandong Province(Grant No.2017CXGC1608)the Natural Science Foundation of Shandong Province(Grant No.ZR201910280267)。
文摘The Sulu orogenic belt is an uplift zone that was formed in the Late Triassic.Several Jurassic to Cretaceous sedimentary successions have been recognized within the Sulu orogenic belt in recent studies,including outcrops that are considered to be related to the newly discovered Riqingwei Basin.This basin has been the focus of extensive study due to its continuous Cretaceous rock sequence,geological location and petroleum resource potential.However,the lack of a consolidated chronology for the strata has precluded a better understanding of stratigraphy,tectonic evolution and resource potential of the Riqingwei Basin.Here,we present the results of a new magnetostratigraphic study of the continental scientific drilling borehole LK-1,which is located on Lingshan Island,offshore Shandong province,eastern China.The goals of this study are to(1)refine the Late Jurassic to Early Cretaceous chronostratigraphic framework of the Riqingwei Basin,and(2)investigate the location of the J/K boundary in the Borehole Core LK-1.The observed patterns of the paleomagnetic polarity zone in the LK-1 borehole correlate well with the geomagnetic polarity time scale(GPTS),and the continuous magnetostratigraphy profile defined in this core indicates an age ranging from 146.5 to 125.8 Ma for the samples interval.The sediment accumulation rates(SAR)of LK-1 show one period of high SAR(~10.5 cm kyr^(-1))at 135.3–130.6 Ma and two periods of low SAR(~4.8 and~2.2 cm kyr^(-1))at145.7–135.3 and 130.6–125.8 Ma,respectively.In addition,the magnetostratigraphic results suggest that the Jurassic-Cretaceous(J/K)boundary of the LK-1 is located within the magnetozone N21.2 n(~1254 m).This comprehensive geochronologic framework provides a good correlation of the marine Upper Jurassic to Lower Cretaceous strata in the Riqingwei Basin to other marine strata and continental sequences,in addition to providing a foundation for the study of the structural evolution of eastern China.