Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ...Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.展开更多
Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati...Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.展开更多
With the development of intelligent agents pursuing humanisation,artificial intelligence must consider emotion,the most basic spiritual need in human interaction.Traditional emotional dialogue systems usually use an e...With the development of intelligent agents pursuing humanisation,artificial intelligence must consider emotion,the most basic spiritual need in human interaction.Traditional emotional dialogue systems usually use an external emotional dictionary to select appropriate emotional words to add to the response or concatenate emotional tags and semantic features in the decoding step to generate appropriate responses.However,selecting emotional words from a fixed emotional dictionary may result in loss of the diversity and consistency of the response.We propose a semantic and emotion-based dual latent variable generation model(Dual-LVG)for dialogue systems,which is able to generate appropriate emotional responses without an emotional dictionary.Different from previous work,the conditional variational autoencoder(CVAE)adopts the standard transformer structure.Then,Dual-LVG regularises the CVAE latent space by introducing a dual latent space of semantics and emotion.The content diversity and emotional accuracy of the generated responses are improved by learning emotion and semantic features respectively.Moreover,the average attention mechanism is adopted to better extract semantic features at the sequence level,and the semi-supervised attention mechanism is used in the decoding step to strengthen the fusion of emotional features of the model.Experimental results show that Dual-LVG can successfully achieve the effect of generating different content by controlling emotional factors.展开更多
The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biolog...The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data.展开更多
A latent variable regression algorithm with a regularization term(r LVR) is proposed in this paper to extract latent relations between process data X and quality data Y. In rLVR,the prediction error between X and Y is...A latent variable regression algorithm with a regularization term(r LVR) is proposed in this paper to extract latent relations between process data X and quality data Y. In rLVR,the prediction error between X and Y is minimized, which is proved to be equivalent to maximizing the projection of quality variables in the latent space. The geometric properties and model relations of rLVR are analyzed, and the geometric and theoretical relations among r LVR, partial least squares, and canonical correlation analysis are also presented. The rLVR-based monitoring framework is developed to monitor process-relevant and quality-relevant variations simultaneously. The prediction and monitoring effectiveness of rLVR algorithm is demonstrated through both numerical simulations and the Tennessee Eastman(TE) process.展开更多
This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and laten...This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations.展开更多
Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic ...Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic life-style that is highly influenced by the mining. In order to sustain the societal development beyond the mine closure, it is necessary to plan post mining activities in the area. Thus, it is essential to predict the impacts of mine closure well before the closure. Many societal and family attributes are affected by mine closure. Impact on these attributes is reflected on the overall quality of life of the neighboring community. There are no adequate indicators and/or methodology available to measure social impacts of mine closure on a neighboring community. This paper made an attempt to develop such methodology to predict the degree of adverse effects of mine closure on the quality of life of neighboring communities using the Structural Equation Modeling (SEM) and the Latent Variables Interaction Model (LVM).展开更多
基于ICLV(Integrated Choice and Latent Variable)模型,结合2013年绍兴市居民出行调查数据,研究通勤者的方式选择行为,包括小汽车、公交车、摩托车和电动车等4种当地居民在日常生活中较常用的交通方式。模型不仅分析了可观测的个人及...基于ICLV(Integrated Choice and Latent Variable)模型,结合2013年绍兴市居民出行调查数据,研究通勤者的方式选择行为,包括小汽车、公交车、摩托车和电动车等4种当地居民在日常生活中较常用的交通方式。模型不仅分析了可观测的个人及家庭的社会经济属性对通勤方式的影响,而且通过潜变量模型构建通勤者个人对各类出行方式的态度等不可见因素,并将其纳入选择模型。结果表明,潜在的心理因素同样对方式选择行为有重要影响,并能够揭示选择行为的内在原因。该研究可为交通需求管理策略制定者以及交通规划者提供指导意见,从而促进交通系统的可持续发展。展开更多
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金supported in part by the National Natural Science Foundation of China (62136008,62236002,61921004,62173251,62103104)the “Zhishan” Scholars Programs of Southeast Universitythe Fundamental Research Funds for the Central Universities (2242023K30034)。
文摘Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms.
文摘Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.
基金Fundamental Research Funds for the Central Universities of China,Grant/Award Number:CUC220B009National Natural Science Foundation of China,Grant/Award Numbers:62207029,62271454,72274182。
文摘With the development of intelligent agents pursuing humanisation,artificial intelligence must consider emotion,the most basic spiritual need in human interaction.Traditional emotional dialogue systems usually use an external emotional dictionary to select appropriate emotional words to add to the response or concatenate emotional tags and semantic features in the decoding step to generate appropriate responses.However,selecting emotional words from a fixed emotional dictionary may result in loss of the diversity and consistency of the response.We propose a semantic and emotion-based dual latent variable generation model(Dual-LVG)for dialogue systems,which is able to generate appropriate emotional responses without an emotional dictionary.Different from previous work,the conditional variational autoencoder(CVAE)adopts the standard transformer structure.Then,Dual-LVG regularises the CVAE latent space by introducing a dual latent space of semantics and emotion.The content diversity and emotional accuracy of the generated responses are improved by learning emotion and semantic features respectively.Moreover,the average attention mechanism is adopted to better extract semantic features at the sequence level,and the semi-supervised attention mechanism is used in the decoding step to strengthen the fusion of emotional features of the model.Experimental results show that Dual-LVG can successfully achieve the effect of generating different content by controlling emotional factors.
文摘The analysis of spatially correlated binary data observed on lattices is an interesting topic that catches the attention of many scholars of different scientific fields like epidemiology, medicine, agriculture, biology, geology and geography. To overcome the encountered difficulties upon fitting the autologistic regression model to analyze such data via Bayesian and/or Markov chain Monte Carlo (MCMC) techniques, the Gaussian latent variable model has been enrolled in the methodology. Assuming a normal distribution for the latent random variable may not be realistic and wrong, normal assumptions might cause bias in parameter estimates and affect the accuracy of results and inferences. Thus, it entails more flexible prior distributions for the latent variable in the spatial models. A review of the recent literature in spatial statistics shows that there is an increasing tendency in presenting models that are involving skew distributions, especially skew-normal ones. In this study, a skew-normal latent variable modeling was developed in Bayesian analysis of the spatially correlated binary data that were acquired on uncorrelated lattices. The proposed methodology was applied in inspecting spatial dependency and related factors of tooth caries occurrences in a sample of students of Yasuj University of Medical Sciences, Yasuj, Iran. The results indicated that the skew-normal latent variable model had validity and it made a decent criterion that fitted caries data.
基金supported by the Chemical Engineering Department at the University of Waterloo。
文摘A latent variable regression algorithm with a regularization term(r LVR) is proposed in this paper to extract latent relations between process data X and quality data Y. In rLVR,the prediction error between X and Y is minimized, which is proved to be equivalent to maximizing the projection of quality variables in the latent space. The geometric properties and model relations of rLVR are analyzed, and the geometric and theoretical relations among r LVR, partial least squares, and canonical correlation analysis are also presented. The rLVR-based monitoring framework is developed to monitor process-relevant and quality-relevant variations simultaneously. The prediction and monitoring effectiveness of rLVR algorithm is demonstrated through both numerical simulations and the Tennessee Eastman(TE) process.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)(ID:236482)for supporting this research
文摘This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations.
文摘Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic life-style that is highly influenced by the mining. In order to sustain the societal development beyond the mine closure, it is necessary to plan post mining activities in the area. Thus, it is essential to predict the impacts of mine closure well before the closure. Many societal and family attributes are affected by mine closure. Impact on these attributes is reflected on the overall quality of life of the neighboring community. There are no adequate indicators and/or methodology available to measure social impacts of mine closure on a neighboring community. This paper made an attempt to develop such methodology to predict the degree of adverse effects of mine closure on the quality of life of neighboring communities using the Structural Equation Modeling (SEM) and the Latent Variables Interaction Model (LVM).
文摘基于ICLV(Integrated Choice and Latent Variable)模型,结合2013年绍兴市居民出行调查数据,研究通勤者的方式选择行为,包括小汽车、公交车、摩托车和电动车等4种当地居民在日常生活中较常用的交通方式。模型不仅分析了可观测的个人及家庭的社会经济属性对通勤方式的影响,而且通过潜变量模型构建通勤者个人对各类出行方式的态度等不可见因素,并将其纳入选择模型。结果表明,潜在的心理因素同样对方式选择行为有重要影响,并能够揭示选择行为的内在原因。该研究可为交通需求管理策略制定者以及交通规划者提供指导意见,从而促进交通系统的可持续发展。