Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with...Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.展开更多
基金Supported by the National Natural Science Foundation of China(No.11171105 and No.11171293)National Social Science Foundation of China(No.10BTJ001)
文摘Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.