A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has ...A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.展开更多
A new biological aerated filter?lateral flow biological aerated filter(LBAF) is developed. The effects of air/water ratio, hydraulic loading and the length of LBAF on pollutants removal efficiency are tested. The resu...A new biological aerated filter?lateral flow biological aerated filter(LBAF) is developed. The effects of air/water ratio, hydraulic loading and the length of LBAF on pollutants removal efficiency are tested. The results show that under optimal technological conditions when hydraulic loading is 0.43 m3 m?2 h?1 and air/water ratio is 10:1, the average removal efficiencies of COD, SS, NH3-N, and TN reach 88.01%, 95.18%, 78.97% and 52.58%, respectively. An LBAF has a large pollutants handling capacity; is less liable to be blocked, and has a longer operation cycle in comparison with a traditional BAF.展开更多
基金Funded by the National Key Technologies R & D Program of China During the 10th Five-Year Plan Periods of China (No.2001BA604A01-03).
文摘A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.
基金Funded by the National Basic Science and Technique Foundation During the 10th Five-Year Plan Period (No.2004BA604A01)
文摘A new biological aerated filter?lateral flow biological aerated filter(LBAF) is developed. The effects of air/water ratio, hydraulic loading and the length of LBAF on pollutants removal efficiency are tested. The results show that under optimal technological conditions when hydraulic loading is 0.43 m3 m?2 h?1 and air/water ratio is 10:1, the average removal efficiencies of COD, SS, NH3-N, and TN reach 88.01%, 95.18%, 78.97% and 52.58%, respectively. An LBAF has a large pollutants handling capacity; is less liable to be blocked, and has a longer operation cycle in comparison with a traditional BAF.