期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Assessment of pipeline stability in the Gulf of Mexico during hurricanes using dynamic analysis 被引量:3
1
作者 Yinghui Tian Bassem Youssef Mark J.Cassidy 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第2期74-79,共6页
Pipelines are the critical link between major offshore oil and gas developments and the mainland. Any inadequate on-bottom stability design could result in disruption and failure, having a devastating impact on the ec... Pipelines are the critical link between major offshore oil and gas developments and the mainland. Any inadequate on-bottom stability design could result in disruption and failure, having a devastating impact on the economy and environment. Predicting the stability behavior of offshore pipelines in hurricanes is therefore vital to the assessment of both new design and existing assets. The Gulf of Mexico has a very dense network of pipeline systems constructed on the seabed. During the last two decades, the Gulf of Mexico has experienced a series of strong hurricanes, which have destroyed, disrupted and destabilized many pipelines. This paper first reviews some of these engineering cases. Following that, three case studies are retrospectively simulated using an in-house developed program. The study utilizes the offshore pipeline and hurricane details to conduct a Dynamic Lateral Stability analysis, with the results providing evidence as to the accuracy of the modeling techniques developed. 展开更多
关键词 Pipeline On-bottom stability Dynamic lateral stability analysis Force-resultant model Hydrodynamic load
下载PDF
Interaction analysis of back-to-back mechanically stabilized earth walls 被引量:1
2
作者 Sadok Benmebarek Samir Attallaoui Nai'ma Benmebarek 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期697-702,共6页
Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines fo... Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines for BBMSEWs are limited and not applicable to numerical modeling when back-to-back walls interact with each other. The objective of this paper is to investigate, using PLAXIS code, the effects of the reduction in the distance between BBMSEW, the reinforcement length, the quality of backfill material and the connection of reinforcements in the middle, when the back-to-back walls are close. The results indicate that each of the BBMSEWs behaves independently if the width of the embankment between mechanically stabilized earth walls is greater than that of the active zone. This is in good agreement with the result of FHWA design guideline. However, the results show that the FHWA design guideline underestimates the lateral earth pressure when back-to-back walls interact with each other. Moreover, for closer BBMSEWs, FHWA design guideline strongly overestimates the maximum tensile force in the reinforcement. The investigation of the quality of backfill material shows that the minor increase in embankment cohesion can lead to significant reductions in both the lateral earth pressure and the maximum tensile force in geosynthetic. When the distance between the two earth walls is close to zero, the connection of reinforcement between back-to-back walls significantly improves the factor of safety. 展开更多
关键词 Back-to-back walls Numerical analysis Geosynthetic Factor of safety lateral earth pressure Maximum tensile force Reinforcement
下载PDF
Design of micropiles to increase earth slopes stability 被引量:4
3
作者 孙书伟 王家臣 卞晓琳 《Journal of Central South University》 SCIE EI CAS 2013年第5期1361-1367,共7页
A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on bearn-colurnn equation and an existing P-y curve method was set up and used to find the shear capa... A methodology was proposed for the design of micropiles to increase earth slopes stability. An analytic model based on bearn-colurnn equation and an existing P-y curve method was set up and used to find the shear capacity of the micropile. Then, a step-by-step design procedure for stabilization of earth slope with rnicropiles was introduced, involving six main steps: 1) Choosing a location for the rnicropiles within the existing slope; 2) Selecting micropile cross section; 3) Estimating length of rnicropile; 4) Evaluating shear capacity of mieropiles; 5) Calculating spacing required to provide force to stabilize the slope; 6) Designing the concrete cap beam. The application of the method to an embankment landslide in Qinghai Province was described in detail. In the final design, three rows of rnicropiles were adopted as a group and a total of 126 rnicropiles with 0.23 m in diameter were used. The micropile length ranged between 15 and 18 m, with the spacing 1.5 m at in-row direction. The monitoring data indicate that slope movement has been effectively controlled as a result of the slope stabilization measure, which verifies the reasonability of the design method. 展开更多
关键词 micropiles earth slope stabilization lateral response analysis design method P-y curve
下载PDF
Analytical modeling and simulation on lateral mechanical characteristics of high-speed train traction motor hanging leaf spring 被引量:1
4
作者 Yuewei Yu Leilei Zhao Changcheng Zhou 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2019年第3期146-163,共18页
In this paper,using the theoretical analysis method,according to the actual structure of the hanging leaf spring of the traction motor mounted on the frame,the lateral force model of the hanging leaf spring of the tra... In this paper,using the theoretical analysis method,according to the actual structure of the hanging leaf spring of the traction motor mounted on the frame,the lateral force model of the hanging leaf spring of the traction motor was established.Then,through theoretical deduction,the deformation analytical calculation formula and the stress analytical calculation formula of the hanging leaf spring were established.The correctness of the leaf spring’s lateral force model was established and its deformation and stress analytical formulae were verified using ANSYS finite element analysis software.Based on this,according to the deformation analytical formula and the stress analytical formula of the leaf spring established,the influence of the main structural parameters on the mechanical characteristics of the leaf spring was discussed,and the reliability of the analytical analysis method of the lateral mechanical characteristics of the traction motor hanging leaf spring was verified by the loading–unloading test.The results show that the deformation and the load of the leaf spring change linearly.The changes of leaf spring’s stress at different positions can be considered as being composed of three sections:a linear change section in the root,a nonlinear change section in the middle,and a nonlinear change section in the end.In the structural parameters,the end thickness h2 has the greatest influence on the stiffness and the stress of the leaf spring,and the maximum thickness of the leaf spring eye h1 has the least influence on the stiffness and the stress of the leaf spring.The influence degree of other parameters on the stiffness of the leaf spring is h_(3),L_(1),L_(3),L_(2) in order,and the influence degree on the stress of the leaf spring is h_(3),L_(1),L_(2),L_(3) in order.In addition,when the root thickness h_(3) is greater than a certain value,the maximum stress point of the leaf spring appears at the end position L_(2).This study can provide a useful reference for the intelligent forward design and the rapid analysis of the mechanical characteristics of high-speed train traction motor hanging leaf spring. 展开更多
关键词 High-speed train traction motor hanging leaf spring analytical calculation lateral mechanical characteristics analysis
原文传递
Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data 被引量:8
5
作者 Wenting Luo Lin Li Kelvin C.P.Wang 《Journal of Traffic and Transportation Engineering(English Edition)》 2016年第2期137-145,共9页
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona... Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis. 展开更多
关键词 Horizontal curve Inertial measurement unit (IMU) Curve radius Kinematic method Geometry method lateral acceleration method ANOVA test Curve safety analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部