Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and ...Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.展开更多
基金This study was supported by the National Natural Science Foundation of China under Grant No.50078016Open Funding of State Key Laboratory for Disaster Reduction in Civil Engineering,China.
文摘Shaking table tests of a 1:10 scale arch model performed to investigate the seismic behavior and resistance of concrete filled steel tubular (CFT) arch structures are described in this paper. The El-Centro record and Shanghai artificial wave were adopted as the input excitation. The entire test process can be divided into three stages depending on the lateral brace configurations, i.e., fully (five) braced, two braces removed, and all braces removed. A total of 46 tests, starting from the elastic state to failure condition, have been conducted. The natural vibration frequencies, responses of acceleration, displacement and strain were measured. From the test results, it is demonstrated that the CFT arch structures are capable of resisting severe ground motions and that CFT arches offer a credible alternative to reinforced concrete arches, especially in regions of high seismic intensity.