Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pi...Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pipeline to transform into multiple short pipeline segments,which promote the occurrence of pipeline walking.Thus,a pipeline,which is designed to buckle laterally,may laterally and axially displace over time when subjected to repeated heating and cooling cycles.This study aims to reveal the coupling mechanism of pipeline walking and global lateral buckling.First,an analytic solution is proposed to estimate the walking of pipeline segments between two adjacent buckles.Then,the sensitivity of this method to heating and cooling cycles is analyzed.Results show the applicability of the proposed walking analytical solution of buckling pipelines.Subsequently,an influence analysis of walking on global buckling,including the capacity of buckling initiation,buckling amplitude,buckling mode,and failure assessment of the buckling pipeline,is performed.The results reveal that the effect of walking on the buckling axial force is negligible.However,pipeline walking will aggravate the asymmetry of the pipeline buckling and the failure parameters of the pipeline during the post-buckling.展开更多
In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of...In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of temperature and pressure cause additional stress along the pipeline,due to the constraint of the foundation soil,the additional stress can not release freely,when the additional stress is large enough to motivate the submarine pipelines buckle.In this work,the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature,buckling length and amplitude under different high-order global lateral buckling modes.To obtain a consistent formulation of the problem,the principles of virtual displacements and the variation calculus for variable matching points are applied.The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure.The factors influencing the lateral buckling of pipelines are further studied.Based upon some actual engineering projects,the finite element results are compared with the analytical ones,and then the influence of thermal stress,the section rigidity of pipeline,the soil properties and the trigging force to the high order lateral buckling are discussed.The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis.In practice,increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.展开更多
An analysis method for the buckling process of a pipe section with a random pipelay imperfection is proposed. Four basic lateral modes, acquired by finite-element (FE) eigenvalue buckling analysis, are combined to p...An analysis method for the buckling process of a pipe section with a random pipelay imperfection is proposed. Four basic lateral modes, acquired by finite-element (FE) eigenvalue buckling analysis, are combined to provide the needed grid configurations for describing a real pipelay imperfection and an arc-length algorithm is used to analyze the snap-through process of the shell-element-grid model under nonlinear frictional boundary conditions. This paper also presents evaluation methods for the lateral buckling of two types of pipe-in-pipe systems that are used in the offshore oil and gas industry. For evaluating the buckling and postbuckling of compliant pipe-in-pipe systems FE analyses were carried out to judge the occurrence of the system buckling and furthermore to check postbuckling stresses induced in the buckles. The calculated results of the modified Riks algorithm indicate that only when high temperature would not trigger an abrupt short-wavelength buckle and when no yielding has been induced in the unavoidable long-wavelength buckles, the thermal stability and safety of compliant pipe-in-pipe systems can be proved. In the non-compliant pipe-in-pipe systems, firstly small-amplitude buckles of the carrier pipe may occur in the annulus between carrier pipe and casing pipe and the contact forces between the spacers and the casing pipe may drive the buckle of the pipe-in-pipe systems on the seabed. Based on the classical analytical solution of pipe buckling, four potential buckling modes corresponding to finite- element models are developed to evaluate the stability and the postbuckling strength of such pipe-in-pipe systems.展开更多
It is of importance to study and predict the possible buckling of submarine pipeline under thermal stress in pipeline design.Since soil resistance is not strong enough to restrain the large deformation of pipeline,hig...It is of importance to study and predict the possible buckling of submarine pipeline under thermal stress in pipeline design.Since soil resistance is not strong enough to restrain the large deformation of pipeline,high-order buckling modes occur very easily.Analytical solutions to high-order buckling modes were obtained in this paper.The relationships between buckling temperature and the amplitude or the wavelength of buckling modes were established.Analytical solutions were obtained to predict the occurrence and consequence of in-service buckling of a heated pipeline in an oil field.The effects of temperature difference and properties of subsoil on buckling modes were investigated.The results show that buckling will occur once temperature difference exceeds safe temperature;high-order pipeline buckling occurs very easily;the larger the friction coefficients are,the safer the submarine pipeline will be.展开更多
The present paper investigates several problems for unsymmetrically lateral instability of rectangular plates by the energy method. In the text we discuss the minimum critical load of rectangular plates which possess ...The present paper investigates several problems for unsymmetrically lateral instability of rectangular plates by the energy method. In the text we discuss the minimum critical load of rectangular plates which possess the unsymmetrical supporters and to which the lateral buckling occurs unsymmetrically under a concentrated force, uniformly distributed load and the concentrated couples respectively.展开更多
With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburie...With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.展开更多
A new material model for beam elements was developed for use as normalized tangent modulus expressions when performing 3-dimensional second-order inelastic analyses of steel I-section beams.The stiffness matrix of a 1...A new material model for beam elements was developed for use as normalized tangent modulus expressions when performing 3-dimensional second-order inelastic analyses of steel I-section beams.The stiffness matrix of a 14 degree-of-freedom beam element was updated to include the effects of yielding on St.Venant’s torsion and bimoment stiffness at the initial and terminal nodes.A validation study compared the new model’s results with those from published detailed finite element analyses and was found to be in very close agreement.A biaxial end-moment study with two different depth-to-flange-width ratios provided expected and consistent results over a range of moment conditions.展开更多
Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global bucklin...Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling under thermal stress and internal pressure. Therefore, it is vitally important to study the global buckling of the submarine pipeline with initial imperfections. On the basis of the characteristics of the initial imperfections, the global lateral buckling of submarine pipelines was analyzed. Based on the deduced analytical solutions for the global lateral buckling, effects of temperature difference and properties of foundation soil on pipeline buckling were analyzed. The results show that the snap buckling is predominantly governed by the amplitude value of initial imperfection; the triggering temperature difference of Mode I for pipelines with initial imperfections is higher than that of Mode I1; a pipeline with a larger friction coefficient is safer than that with a smaller one; pipelines with larger initial imperfections are safer than those with smaller ones.展开更多
The lateral torsional buckling phenomenon often governs design of steel I-beams. Although web opening is often used to accommodate the required mechanical and piping works in buildings, its effect on the buckling inst...The lateral torsional buckling phenomenon often governs design of steel I-beams. Although web opening is often used to accommodate the required mechanical and piping works in buildings, its effect on the buckling instability is not considered in the design codes. In this paper, the effect of web opening on both lateral torsional buckling and local buckling behaviors has been investigated. A simply supported steel I-beam has been studied under uniform bending moment around the major axis. Buckling analysis has been performed using the finite element method. Linear regression analysis has been conducted for output data to formulate an equation for the critical moment including web opening effect. The results have shown a limited reduction in the lateral torsional buckling capacity and a significant reduction in the local buckling capacity.展开更多
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
Corrosion is one of the main causes of deterioration in steel structures. Loss of thickness in flanges and web of corroded steel beams leads to reduction in section properties which can reduce the lateral torsional bu...Corrosion is one of the main causes of deterioration in steel structures. Loss of thickness in flanges and web of corroded steel beams leads to reduction in section properties which can reduce the lateral torsional buckling capacity of the member. In this paper, thickness loss data were compiled from four samples of corrosion damaged I-beams removed from a petro-chemical plant. Visual examination of the four corroded beams showed that they were corroded uniformly. To improve the accuracy of the results, a large number of measurements for surface roughness were taken for each beam, totally 770 values to obtain the average thickness of flanges and web of each beam. The data was used to develop a corrosion decay model in order to calculate the percentage remaining lateral torsional buckling capacity of long and short span beams which are laterally unrestrained. To estimate the percentage of remaining lateral torsional buckling capacity in the corroded damaged I-beams, the readily available minimum curves for different types of universal beams in conjunction with information on the thickness loss were used. The results can be used by practicing engineers for better estimation on the service life of deteriorated steel structures.展开更多
基金supported by the China National Postdoctoral Program for Innovative Talents(No.BX2021213)the Natural Science Foundation for Distinguished Young Scholars of China(No.51825904).
文摘Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pipeline to transform into multiple short pipeline segments,which promote the occurrence of pipeline walking.Thus,a pipeline,which is designed to buckle laterally,may laterally and axially displace over time when subjected to repeated heating and cooling cycles.This study aims to reveal the coupling mechanism of pipeline walking and global lateral buckling.First,an analytic solution is proposed to estimate the walking of pipeline segments between two adjacent buckles.Then,the sensitivity of this method to heating and cooling cycles is analyzed.Results show the applicability of the proposed walking analytical solution of buckling pipelines.Subsequently,an influence analysis of walking on global buckling,including the capacity of buckling initiation,buckling amplitude,buckling mode,and failure assessment of the buckling pipeline,is performed.The results reveal that the effect of walking on the buckling axial force is negligible.However,pipeline walking will aggravate the asymmetry of the pipeline buckling and the failure parameters of the pipeline during the post-buckling.
基金Project(51021004)supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(NCET-11-0370)supported by Program for New Century Excellent Talents in Universities of China+1 种基金Project(40776055)supported by the National Natural Science Foundation of ChinaProject(1002)supported by State Key Laboratory of Ocean Engineering Foundation,China
文摘In order to avoid the curing effects of paraffin on the transport process and reduce the transport difficulty,usually high temperature and high pressure are used in the transportation of oil and gas.The differences of temperature and pressure cause additional stress along the pipeline,due to the constraint of the foundation soil,the additional stress can not release freely,when the additional stress is large enough to motivate the submarine pipelines buckle.In this work,the energy method is introduced to deduce the analytical solution which is suitable for the global buckling modes of idealized subsea pipeline and analyze the relationship between the critical buckling temperature,buckling length and amplitude under different high-order global lateral buckling modes.To obtain a consistent formulation of the problem,the principles of virtual displacements and the variation calculus for variable matching points are applied.The finite element method based on elasto-plastic theory is used to simulate the lateral global buckling of the pipelines under high temperature and pressure.The factors influencing the lateral buckling of pipelines are further studied.Based upon some actual engineering projects,the finite element results are compared with the analytical ones,and then the influence of thermal stress,the section rigidity of pipeline,the soil properties and the trigging force to the high order lateral buckling are discussed.The method of applying the small trigging force on pipeline is reliable in global buckling numerical analysis.In practice,increasing the section rigidity of a pipeline is an effective measure to improve the ability to resist the global buckling.
基金supported by the National Natural Science Foundation of China (No .50979113)
文摘An analysis method for the buckling process of a pipe section with a random pipelay imperfection is proposed. Four basic lateral modes, acquired by finite-element (FE) eigenvalue buckling analysis, are combined to provide the needed grid configurations for describing a real pipelay imperfection and an arc-length algorithm is used to analyze the snap-through process of the shell-element-grid model under nonlinear frictional boundary conditions. This paper also presents evaluation methods for the lateral buckling of two types of pipe-in-pipe systems that are used in the offshore oil and gas industry. For evaluating the buckling and postbuckling of compliant pipe-in-pipe systems FE analyses were carried out to judge the occurrence of the system buckling and furthermore to check postbuckling stresses induced in the buckles. The calculated results of the modified Riks algorithm indicate that only when high temperature would not trigger an abrupt short-wavelength buckle and when no yielding has been induced in the unavoidable long-wavelength buckles, the thermal stability and safety of compliant pipe-in-pipe systems can be proved. In the non-compliant pipe-in-pipe systems, firstly small-amplitude buckles of the carrier pipe may occur in the annulus between carrier pipe and casing pipe and the contact forces between the spacers and the casing pipe may drive the buckle of the pipe-in-pipe systems on the seabed. Based on the classical analytical solution of pipe buckling, four potential buckling modes corresponding to finite- element models are developed to evaluate the stability and the postbuckling strength of such pipe-in-pipe systems.
基金Supported by Innovative Research Groups of the National Natural Science Foundation of China(No.51021004)National Natural Science Foundation of China(No.40776055)+1 种基金Program for New Century Excellent Talents in University(NCET-11-0370)State Key Laboratory of Ocean Engineering Foundation(1002)
文摘It is of importance to study and predict the possible buckling of submarine pipeline under thermal stress in pipeline design.Since soil resistance is not strong enough to restrain the large deformation of pipeline,high-order buckling modes occur very easily.Analytical solutions to high-order buckling modes were obtained in this paper.The relationships between buckling temperature and the amplitude or the wavelength of buckling modes were established.Analytical solutions were obtained to predict the occurrence and consequence of in-service buckling of a heated pipeline in an oil field.The effects of temperature difference and properties of subsoil on buckling modes were investigated.The results show that buckling will occur once temperature difference exceeds safe temperature;high-order pipeline buckling occurs very easily;the larger the friction coefficients are,the safer the submarine pipeline will be.
文摘The present paper investigates several problems for unsymmetrically lateral instability of rectangular plates by the energy method. In the text we discuss the minimum critical load of rectangular plates which possess the unsymmetrical supporters and to which the lateral buckling occurs unsymmetrically under a concentrated force, uniformly distributed load and the concentrated couples respectively.
基金financially supported by the National Basic Key Research Program of China(Grant No.2014CB046802)the National Natural Science Foundation of China(Grant No.51679162)the Natural Science Foundation of Tianjin(Grant No.17JCZDJC39900)
文摘With the increasing development and utilization of offshore oil and gas resources, global buckling failures of pipelines subjected to high temperature and high pressure are becoming increasingly important. For unburied or semi-buried submarine pipelines, lateral global buckling represents the main form of global buckling. The pipe–soil interaction determines the deformation and stress distribution of buckling pipelines. In this paper, the nonlinear pipe–soil interaction model is introduced into the analysis of pipeline lateral global buckling, a coupling method of PSI elements and the modified RIKS algorithm is proposed to study the lateral global buckling of a pipeline, and the buckling characteristics of submarine pipeline with a single arch symmetric initial imperfection under different pipe–soil interaction models are studied. Research shows that, compared with the ideal elastic–plastic pipe–soil interaction model, when the DNV-RP-F109 model is adopted to simulate the lateral pipe–soil interactions in the lateral global buckling of a pipeline, the buckling amplitude increases, however, the critical buckling force and the initial buckling temperature difference decreases. In the DNV-RP-F109 pipe–soil interaction model, the maximum soil resistance, the residual soil resistance, and the displacement to reach the maximum soil resistance have significant effects on the analysis results of pipeline global buckling.
文摘A new material model for beam elements was developed for use as normalized tangent modulus expressions when performing 3-dimensional second-order inelastic analyses of steel I-section beams.The stiffness matrix of a 14 degree-of-freedom beam element was updated to include the effects of yielding on St.Venant’s torsion and bimoment stiffness at the initial and terminal nodes.A validation study compared the new model’s results with those from published detailed finite element analyses and was found to be in very close agreement.A biaxial end-moment study with two different depth-to-flange-width ratios provided expected and consistent results over a range of moment conditions.
基金Project(51021004)supported by Innovative Research Groups of the National Natural Science Foundation of ChinaProject(NCET-11-0370)supported by Program for New Century Excellent Talents in Universities of China+1 种基金Project(40776055)supported by the National Natural Science Foundation of ChinaProject(1002)supported by State Key Laboratory of Ocean Engineering Foundation,China
文摘Buckling of submarine pipelines under thermal stress is one of the most important problems to be considered in pipeline design. And pipeline with initial imperfections will easily undergo failure due to global buckling under thermal stress and internal pressure. Therefore, it is vitally important to study the global buckling of the submarine pipeline with initial imperfections. On the basis of the characteristics of the initial imperfections, the global lateral buckling of submarine pipelines was analyzed. Based on the deduced analytical solutions for the global lateral buckling, effects of temperature difference and properties of foundation soil on pipeline buckling were analyzed. The results show that the snap buckling is predominantly governed by the amplitude value of initial imperfection; the triggering temperature difference of Mode I for pipelines with initial imperfections is higher than that of Mode I1; a pipeline with a larger friction coefficient is safer than that with a smaller one; pipelines with larger initial imperfections are safer than those with smaller ones.
文摘The lateral torsional buckling phenomenon often governs design of steel I-beams. Although web opening is often used to accommodate the required mechanical and piping works in buildings, its effect on the buckling instability is not considered in the design codes. In this paper, the effect of web opening on both lateral torsional buckling and local buckling behaviors has been investigated. A simply supported steel I-beam has been studied under uniform bending moment around the major axis. Buckling analysis has been performed using the finite element method. Linear regression analysis has been conducted for output data to formulate an equation for the critical moment including web opening effect. The results have shown a limited reduction in the lateral torsional buckling capacity and a significant reduction in the local buckling capacity.
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
文摘Corrosion is one of the main causes of deterioration in steel structures. Loss of thickness in flanges and web of corroded steel beams leads to reduction in section properties which can reduce the lateral torsional buckling capacity of the member. In this paper, thickness loss data were compiled from four samples of corrosion damaged I-beams removed from a petro-chemical plant. Visual examination of the four corroded beams showed that they were corroded uniformly. To improve the accuracy of the results, a large number of measurements for surface roughness were taken for each beam, totally 770 values to obtain the average thickness of flanges and web of each beam. The data was used to develop a corrosion decay model in order to calculate the percentage remaining lateral torsional buckling capacity of long and short span beams which are laterally unrestrained. To estimate the percentage of remaining lateral torsional buckling capacity in the corroded damaged I-beams, the readily available minimum curves for different types of universal beams in conjunction with information on the thickness loss were used. The results can be used by practicing engineers for better estimation on the service life of deteriorated steel structures.