Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new s...Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and those of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin’s theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3-2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.展开更多
This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding...This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding suction stress under steady-state flow conditions. Suction stress profile is modeled for one layer sand near the ground above the water level under hydrostatic conditions. By definition, the absolute magnitude of suction stress depends on both the magnitude of the effective stress parameter and matric suction itself. Thus, by developing the Rankine’s relations in seismic state, the composing method of active and passive surfaces in sides of unbraced sheet pile is examinated and the effects of soil parameter on those surfaces are evaluated by a similar process. The relations described the quantitative evaluation of lateral earth pressure on sheet pile and the effects of unsaturated layer on bending moment and embedded depth of sheet pile in soil.展开更多
简要介绍了几何相似系数为7的衡重式桩板挡墙模型和多工况模型试验,着重分析了上墙在不同卸荷板尺寸和设置位置及有外荷载工况下对上墙土压力的分布问题。试验结果表明:①板埋深超过某一深度时,并不能有效改善上墙主动土压力的分布情况...简要介绍了几何相似系数为7的衡重式桩板挡墙模型和多工况模型试验,着重分析了上墙在不同卸荷板尺寸和设置位置及有外荷载工况下对上墙土压力的分布问题。试验结果表明:①板埋深超过某一深度时,并不能有效改善上墙主动土压力的分布情况,反过来说明存在最佳埋深位置。②板宽对卸荷板上表面处的土压力影响较大,但对上墙土压力总体分布趋势没有影响。③填土荷载下,当卸荷板宽度和上墙高比值小于0.4时,上墙土压力接近于朗肯土压力分布;当宽高比大于1.3时,上墙土压力分布更接近于静止土压力。④工程设计时,上墙土压上墙土压力可按公式γh0 k 0+qka计算。展开更多
文摘Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and those of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin’s theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3-2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.
文摘This paper is built upon the previous developments on lateral earth pressure by providing a series of analytical expressions that may be used to evaluate vertical profiles of the effective stress and the corresponding suction stress under steady-state flow conditions. Suction stress profile is modeled for one layer sand near the ground above the water level under hydrostatic conditions. By definition, the absolute magnitude of suction stress depends on both the magnitude of the effective stress parameter and matric suction itself. Thus, by developing the Rankine’s relations in seismic state, the composing method of active and passive surfaces in sides of unbraced sheet pile is examinated and the effects of soil parameter on those surfaces are evaluated by a similar process. The relations described the quantitative evaluation of lateral earth pressure on sheet pile and the effects of unsaturated layer on bending moment and embedded depth of sheet pile in soil.
文摘简要介绍了几何相似系数为7的衡重式桩板挡墙模型和多工况模型试验,着重分析了上墙在不同卸荷板尺寸和设置位置及有外荷载工况下对上墙土压力的分布问题。试验结果表明:①板埋深超过某一深度时,并不能有效改善上墙主动土压力的分布情况,反过来说明存在最佳埋深位置。②板宽对卸荷板上表面处的土压力影响较大,但对上墙土压力总体分布趋势没有影响。③填土荷载下,当卸荷板宽度和上墙高比值小于0.4时,上墙土压力接近于朗肯土压力分布;当宽高比大于1.3时,上墙土压力分布更接近于静止土压力。④工程设计时,上墙土压上墙土压力可按公式γh0 k 0+qka计算。